PurposeMicrotextured surfaces can reduce friction in tribological systems under certain contact conditions. Because it is very time-consuming to determine suitable texture patterns experimentally, numerical approaches to the design of microtextures are increasingly gaining acceptance. The purpose of this paper is to investigate to what extent the selected modeling approach affects optimized texturing.Design/methodology/approachUsing the cam/tappet contact as an application-oriented example, a simplified 2D and a full 3D model are developed for determining the best possible texturing via a design study. The study explores elongated Gaussian-shaped texture elements for this purpose. The optima of the simplified 2D simulation model and the full 3D model are compared with each other to draw conclusions about the influence of the modeling strategy. The target value here is the solid body friction in contact.FindingsFor the elongated texture elements used, both the simplified 2D model and the full model result in very similar optimal texture patterns. In the selected application, the simplified simulation model can significantly reduce the computational effort without affecting the optimization result.Originality/valueDepending on the selected use case, the simulation effort required for microtexture optimization can be significantly reduced by comparing different models first. Therefore, an exact physical replica of the real contact is not necessarily the primary goal when it comes to texture selection based on numerical simulations.