Resistive random-access memory (ReRAM)-based processing-in-memory (PIM) architectures are used extensively to accelerate inferencing/training with convolutional neural networks (CNNs). Three-dimensional (3D) integration is an enabling technology to integrate many PIM cores on a single chip. In this work, we propose the design of a t hermally e fficient data flo w-aware monolithic 3D (M3D) N oC architecture referred to as TEFLON to accelerate CNN inferencing without creating any thermal bottlenecks. TEFLON reduces the Energy-Delay-Product (EDP) by 42%, 46%, and 45% on an average compared to a conventional 3D mesh NoC for systems with 36-, 64-, and 100-PIM cores, respectively. TEFLON reduces the peak chip temperature by 25 K and improves the inference accuracy by up to 11% compared to sole performance-optimized SFC-based counterpart for inferencing with diverse deep CNN models using CIFAR-10/100 datasets on a 3D system with 100-PIM cores.
Read full abstract