With the rapid advancement of 3D acquisition technologies, 3D sensors such as LiDARs, 3D scanners, and RGB-D cameras have become increasingly accessible and cost-effective. These sensors generate 3D point cloud data that require efficient algorithms for tasks such as 3D model classification and segmentation. While deep learning techniques have proven effective in these areas, existing models often rely on complex architectures, leading to high computational costs that are impractical for real-time applications like augmented reality and robotics. In this work, we propose the Multi-level Graph Convolutional Neural Network (MLGCN), an ultra-efficient model for 3D point cloud analysis. The MLGCN model utilizes shallow Graph Neural Network (GNN) blocks to extract features at various spatial locality levels, leveraging precomputed KNN graphs shared across GCN blocks. This approach significantly reduces computational overhead and memory usage, making the model well-suited for deployment on low-memory and low-CPU devices. Despite its efficiency, MLGCN achieves competitive performance in object classification and part segmentation tasks, demonstrating results comparable to state-of-the-art models while requiring up to a thousand times fewer floating-point operations and significantly less storage. The contributions of this paper include the introduction of a lightweight, multi-branch graph-based network for 3D shape analysis, the demonstration of the model's efficiency in both computation and storage, and a thorough theoretical and experimental evaluation of the model's performance. We also conduct ablation studies to assess the impact of different branches within the model, providing valuable insights into the role of specific components.
Read full abstract