Under solvothermal conditions, three 3D lanthanide metal-organic frameworks (Ln-MOFs): [Eu(H2DHTA)1.5(DMF)2]·DMF (1), [Eu(H2DHTA)0.5(DHTA)0.5(DMF)(H2O)]·2H2O (2), and Eu(HCOO)3 (3) (H4DHTA = 2,5-dihydroxyterephthalic acid) have been synthesized by different reaction times. Interestingly, induced by reaction time, compounds 1-3 underwent a two-step dissolution and recrystallization structural transformation (DRST) reaction. Investigations on the DRST processes were carried out, and the transformation pathway was deduced, which was verified by XRD analyses. Notably, compound 2 demonstrates pronounced luminescence as well as high stability in water and other organic solvents. The fluorescent detection of furan antibiotics can serve as turn-off effects, and glutamic acid (Glu), aspartic acid (Asp), and riboflavin (VB2) can serve as the turn-on effect. To explain the enhancing and quenching mechanisms, XRD, UV-visible absorption spectroscopy, electrochemistry, IR spectra, theoretical calculation, fluorescence lifetimes, and XPS were discussed. Additionally, MOF-coated test strips were utilized to detect these analytes, exhibiting excellent agreement with fluorescence spectroscopy. This work provides an example for more effective designs to employ Ln-MOFs as multiresponsive fluorescent sensors for detection of environmental pollutants in aqueous solution.
Read full abstract