A full three-dimensional (3D) potential field model of the central and southern Bushveld Complex reveals information about the Complex in areas obscured by younger geological cover. Previously, two-dimensional gravity models and a few magnetic models limited to certain sections of the Bushveld Complex have been used to propose geometries for the Rustenburg Layered Suite, especially in the western and eastern lobes. These models were often used to support different emplacement models. Although these models provided valuable information, two-and-a-half-dimensional (2.5D) potential field modelling is not well suited to modelling complex 3D geology. Also, in most cases, only the magnetic or gravity data were modelled, but jointly modelling both data sets better constrains the results, as was shown recently for a 3D model of the northern lobe. Joint 3D modelling of regional gravity and magnetic data combined with published crustal thickness models derived from broadband seismic tomography studies and constrained by density and susceptibility data, geologic mapping, boreholes and seismic reflection data were used to create a 3D model of the central and southeastern sections of the Bushveld Complex, as well as the southern part of the northern lobe. The model shows a complex geometry with thick continuous Rustenburg Layered Suite S in most of the western and southeastern lobes, but less continuous Rustenburg Layered Suite in the eastern lobe. Large domes or thick granites and granophyre in the latter interrupt the continuity of the Rustenburg Layered Suite and the western and eastern lobes are strictly speaking only partially connected in places. However, they are not separate intrusions, but one disconnected by pre-existing and synmagmatic updoming. Three possible feeders were modelled in the northern, western, and south-eastern lobes.