Extrusion-based three-dimensional (3D) printing has been extensively studied in the food manufacturing industry. This technology places particular emphasis on the rheological properties of the printing ink. Gel system is the most suitable ink system and benefits from the composition of plant raw materials and gel properties of multiple components; green, healthy aspects of the advantages of the development of plant-based gel system has achieved a great deal of attention. However, the relevant treatment technologies are still only at the laboratory stage. With a view toward encouraging further optimization of ink printing performance and advances in this field, in this review, we present a comprehensive overview of the application of diverse plant-based gel systems in 3D food printing and emphasize the utilization of different treatment methods to enhance the printability of these gel systems. The treatment technologies described in this review are categorized into three distinct groups, physical, chemical, and physicochemical synergistic treatments. We comprehensively assess the specific application of these technologies in various plant-based gel 3D printing systems and present valuable insights regarding the challenges and opportunities for further advances in this field.
Read full abstract