Face recognition based on 3D surface matching is promising for overcoming some of the limitations of current 2D image-based face recognition systems. The 3D shape is generally invariant to the pose and lighting changes, but not invariant to the non-rigid facial movement, such as expressions. Collecting and storing multiple templates to account for various expressions for each subject in a large database is not practical. We propose a facial surface modeling and matching scheme to match 2.5D facial scans in the presence of both non-rigid deformations and pose changes (multiview) to a 3D face template. A hierarchical geodesic-based resampling approach is applied to extract landmarks for modeling facial surface deformations. We are able to synthesize the deformation learned from a small group of subjects (control group) onto a 3D neutral model (not in the control group), resulting in a deformed template. A user-specific (3D) deformable model is built by combining the templates with synthesized deformations. The matching distance is computed by fitting this generative deformable model to a test scan. A fully automatic and prototypic 3D face matching system has been developed. Experimental results demonstrate that the proposed deformation modeling scheme increases the 3D face matching accuracy.
Read full abstract