In this paper, the authors introduce a method of noninvasive anatomical analysis of the facial nerve-vestibulocochlear nerve complex and the depiction of the variable vascular relationships by using 3D volume visualization. With this technique, a detailed spatial representation of the facial and vestibulocochlear nerves was obtained. Patients with hemifacial spasm (HFS) resulting from neurovascular compression (NVC) were examined. A total of 25 patients (13 males and 12 females) with HFS underwent 3D visualization using magnetic resonance (MR) imaging with 3D constructive interference in a steady state (CISS). Each data set was segmented and visualized with respect to the individual neurovascular relationships by direct volume rendering. Segmentation and visualization of the facial and vestibulocochlear nerves were performed with reference to their root exit zone (REZ), as well as proximal and distal segments including corresponding blood vessels. The 3D visualizations were interactively compared with the intraoperative situation during microvascular decompression (MVD) to verify the results with the observed microneurosurgical anatomy. Of the 25 patients, 20 underwent MVD (80%). Microvascular details were recorded on the affected and unaffected sides. On the affected sides, the anterior inferior cerebellar artery (AICA) was the most common causative vessel. The posterior inferior cerebellar artery, vertebral artery, internal auditory artery, and veins at the REZ of the facial nerve (the seventh cranial nerve) were also found to cause vascular contacts to the REZ of the facial nerve. In addition to this, the authors identified three distinct types of NVC within the REZ of the facial nerve at the affected sides. The authors analyzed the varying courses of the vessels on the unaffected sides. There were no bilateral clinical symptoms of HFS and no bilateral vascular compression of the REZ of the facial nerve. The authors discovered that the AICA is the most common vessel that interferes with the proximal and distal portions of the facial nerve without any contact between vessels and the REZ of the facial nerve on the unaffected sides. Three-dimensional visualization by direct volume rendering of 3D CISS MR imaging data offers the opportunity of noninvasive exploration and anatomical categorization of the facial nerve-vestibulocochlear nerve complex. Furthermore, it proves to be advantageous in establishing the diagnosis and guiding neurosurgical procedures by representing original MR imaging patient data in a 3D fashion. This modality provides an excellent overview of the entire neurovascular relationship of the cerebellopontine angle in each case.
Read full abstract