The large Huamei'ao tungsten deposit, with total WO3 reserves of 67,400tons at an average grade of 1.334% WO3, is located in the convergent zone of the eastern Nanling E–W-trending tectono-magmatic belt and the western Wuyishan NNE–SSW-trending tectono-magmatic belt in southern Jiangxi Province, China. The tungsten mineralization in this deposit is mainly found in quartz–wolframite veins, with most orebodies distributed at the outer contact zone between concealed Late Jurassic granitic stocks and Sinian weakly metamorphosed sandstones and phyllites. Zircons collected from medium- to fine-grained biotite granite in a diamond drill hole at a sea level of ca. −10m yield a crystallization age of 159.9 (±1.2) Ma through laser ablation–multicollector–inductively coupled plasma–mass spectrometry (LA–MC–ICP–MS) U–Pb dating. Molybdenite and muscovite that were both separated from quartz–wolframite veins yield a Re–Os isochron age of 158.5 (±3.3) Ma and an 40Ar–39Ar weighted plateau age of 157.9 (±1.1) Ma, respectively. These dates, obtained via three independent geochronological techniques, constrain the ore-forming age of the Huamei'ao deposit and link the genesis of the ore and the underlying granite. Analyses of available high-precision zircon U–Pb, molybdenite Re–Os and muscovite 40Ar–39Ar radiometric ages of major W–Sn deposits in southern Jiangxi Province indicate that there is no significant time interval between W–Sn mineralization and its intimately associated parent granite emplacement (interval of 0–6Ma). These deposits formed over three intervals during the Mesozoic (240–210, 170–150, and 130–90Ma), with large-scale W–Sn mineralization occurring mainly between 160 and 150Ma. The majority of W–Sn deposits in this region are located in southern Jiangxi and southern Hunan provinces.
Read full abstract