Fine-tuning laser parameters is necessary to achieve the desired quality of the process of laser surface texturing. This requires a set of experiments to assess the influence of the main process parameters on the quality of the surface of a treated alloy. By varying the laser parameters, different laser-material interactions, such as heating, melting, or evaporation can be observed. This study analyzes the influence of two interrelated processing parameters in laser surface texturing – the speed of beam motion on the surface on the one hand, and, on the other, the linear pulse density. They ultimately have a direct impact on the resulting microstructure, hydrophilicity, and electrochemical properties of austenitic steel (AISI 304). By adjusting the pulse repetition rate of a 1064-nm fiber laser from 500 kHz to 1000 kHz at a constant speed of 100 mm/s, the surface wettability changes from hydrophobicity to hydrophilicity. All surfaces treated with laser scanning speeds varying from 20 mm/s to 200 mm/s at a constant rate of 500 kHz are hydrophobic. As a result, the changed ability to repel liquids alters the corrosion properties of the steel in a 0.5 M H2SO4 solution. The results allow one to distinguish ranges of laser-beam parameters that could be useful in selecting certain properties of the stainless-steel surface layer.
Read full abstract