The result of continuous efforts in the development of power theory, Budeanu’s power theory was successfully extended. The mathematical description that has been proposed is based on another concept, namely the Currents’ Physical Components (CPC) theory. With CPC theory, it was possible to describe, in the original Budeanu theory, the components of the load current, including the Budeanu distortion current. The Budeanu distortion current can have a maximum of five components associated with different physical phenomena and related to the equivalent parameters of the load. This article discusses passive compensation, which provides compensation for the Budeanu reactive current and the Budeanu complemented reactive current due to the known equivalent load parameters associated with the reactance elements. In addition, the article refers to a very important aspect when determining the parameters of a passive compensator, i.e., choosing parameters in such a way that the compensator simultaneously compensates for the reactive current and the unbalanced current. The article presents five methods relating to the determination of compensator parameters. Two methods are related to the reactive current compensation only for the first harmonic without affecting the unbalanced current. The next three methods relate to the compensation of the Budeanu reactive current and the consideration of the unbalanced current. Calculations and simulations were performed for all five methods, the results of which are presented and analyzed in this publication. The Matlab/Simulink R2023a environment was used as the calculation and simulation software.