BackgroundThe etiology of Anterior Cruciate Ligament (ACL) injury in women football results from the interaction of several extrinsic and intrinsic risk factors. Extrinsic factors change dynamically, also due to fatigue. However, existing biomechanical findings concerning the impact of fatigue on the risk of ACL injuries remains inconsistent. We hypothesized that fatigue induced by acute workload in short and intense game periods, might in either of two ways: by pushing lower limbs mechanics toward a pattern close to injury mechanism, or alternatively by inducing opposed protective compensatory adjustments.AimIn this study, we aimed at assessing the extent to which fatigue impact on joints kinematics and kinetics while performing repeated changes of direction (CoDs) in the light of the ACL risk factors.MethodsThis was an observational, cross-sectional associative study. Twenty female players (age: 20–31 years, 1st–2nd Italian division) performed a continuous shuttle run test (5-m) involving repeated 180°-CoDs until exhaustion. During the whole test, 3D kinematics and ground reaction forces were used to compute lower limb joints angles and internal moments. Measures of exercise internal load were: peak post-exercise blood lactate concentration, heart rate (HR) and perceived exertion. Continuous linear correlations between kinematics/kinetics waveforms (during the ground contact phase of the pivoting limb) and the number of consecutive CoD were computed during the exercise using a Statistical Parametric Mapping (SPM) approach.ResultsThe test lasted 153 ± 72 s, with a rate of 14 ± 2 CoDs/min. Participants reached 95% of maximum HR and a peak lactate concentration of 11.2 ± 2.8 mmol/L. Exercise duration was inversely related to lactate concentration (r = −0.517, p < 0.01), while neither%HRmax nor [La–]b nor RPE were correlated with test duration before exhaustion (p > 0.05). Alterations in lower limb kinematics were found in 100%, and in lower limb kinetics in 85% of the players. The most common kinematic pattern was a concurrent progressive reduction in hip and knee flexion angle at initial contact (10 players); 5 of them also showed a significantly more adducted hip. Knee extension moment decreased in 8, knee valgus moment increased in 5 players. A subset of participants showed a drift of pivoting limb kinematics that matches the known ACL injury mechanism; other players displayed less definite or even opposed behaviors.DiscussionPlayers exhibited different strategies to cope with repeated CoDs, ranging from protective to potentially dangerous behaviors. While the latter was not a univocal effect, it reinforces the importance of individual biomechanical assessment when coping with fatigue.