Reconstructing a 3D shape based on a single sketch image is challenging due to the inherent sparsity and ambiguity present in sketches. Existing methods lose fine details when extracting features to predict 3D objects from sketches. Upon analyzing the 3D-to-2D projection process, we observe that the density map, characterizing the distribution of 2D point clouds, can serve as a proxy to facilitate the reconstruction process. In this work, we propose a novel sketch-based 3D reconstruction model named SketchSampler. It initiates the process by translating a sketch through an image translation network into a more informative 2D representation, which is then used to generate a density map. Subsequently, a two-stage probabilistic sampling process is employed to reconstruct a 3D point cloud: first, recovering the 2D points (i.e., the x and y coordinates) by sampling the density map; and second, predicting the depth (i.e., the z coordinate) by sampling the depth values along the ray determined by each 2D point. Additionally, we convert the reconstructed point cloud into a 3D mesh for wider applications. To reduce ambiguity, we incorporate hidden lines in sketches. Experimental results demonstrate that our proposed approach significantly outperforms other baseline methods.
Read full abstract