In this study, we propose a novel rectification method for three cameras using a single image for depth estimation. Stereo rectification serves as a fundamental preprocessing step for disparity estimation in stereoscopic cameras. However, off-the-shelf depth cameras often include an additional RGB camera for creating 3D point clouds. Existing rectification methods only align two cameras, necessitating an additional rectification and remapping process to align the third camera. Moreover, these methods require multiple reference checkerboard images for calibration and aim to minimize alignment errors, but often result in rotated images when there is significant misalignment between two cameras. In contrast, the proposed method simultaneously rectifies three cameras in a single shot without unnecessary rotation. To achieve this, we designed a lab environment with checkerboard settings and obtained multiple sample images from the cameras. The optimization function, designed specifically for rectification in stereo matching, enables the simultaneous alignment of all three cameras while ensuring performance comparable to traditional methods. Experimental results with real camera samples demonstrate the benefits of the proposed method and provide a detailed analysis of unnecessary rotations in the rectified images.