The aim of this work was to optimize a three-dimensional (3D) phase-contrast venography (PCV) product MR pulse sequence in order to obtain clinically reliable images with less artifacts for an improved depiction of the cranio-cervical venous vessels. Starting from the product sequence, the 3D PCV protocol was optimized in eight steps with respect to the velocity encoding (Venc) direction and value, slice thickness, reduction of susceptibility artifacts and arterial contamination, gradient mode and radio-frequency (RF)-spoiling, B0-Shimming, asymmetric echo technique and RF-pulse type, and flip angle. The product and optimized protocol was used to perform 3D PCV in 12 healthy male volunteers with a median age of 50years using a state-of-the-art 1.5-T MR system. For evaluation, the cranio-cervical venous system was divided into 15 segments. These segments were evaluated by three radiologists with experience in neuroradiology. An ordinal scoring system was used to access the overall diagnostic quality, arterial contamination, and the quality of visualization. Image quality in the optimized 3D PCV was graded as "excellent" by all readers in 65.3% of the cases (p < 0.0001). The visualization of venous segments was strongly improved: it was considered diagnostic in 81.8% of all cases using the optimized sequence and in 47.6% for the product 3D PCV (p < 0.0001), respectively. The optimized protocol improved the imaging of all venous segments (p < 0.0001). The optimized 3D PCV pulse sequence showed superior results compared to the product 3D PCV for the visualization and evaluation of the venous system in all healthy volunteers.
Read full abstract