MXene (Ti3C2Tx) is an important category of two-dimensional (2D) materials due to its distinctive metallic conductivity and adjustable surface chemistry. The exceptional benefits of heterointerface and defects or viods, combined with the distinct electromagnetic (EM) properties, inject boundless potential into the advancement of MXene-based absorbers for EM absorbing materials. However, conventional synthetic methods depend on chemical etching of MAX powders (Ti3AlC2) using hazardous HF or similar substances, resulting in MXene sheets with fluorine termination and limited stability in colloidal dispersions under ambient conditions. Herein, varied synthetic routes were proposed to prepare MXenes with different terminal groups by the fluoride-based salts, fluoride-free molten salts, and alkali etching. 2D MXene nanosheets with abundant surface groups are excellent EM absorbing materials, and the MXene etched by the Lewis acid CuCl2 delivered remarkable reflection loss (RL) value of −47.56 dB at 2.5 mm and broad bandwidth of 4.8 GHz due to promoted interfacial polarization. By conducting a thorough examination of the structural changes in MXenes, this study aims to propose a viable method for delaminating single-layer MXene and elucidate the EM absorption mechanisms.
Read full abstract