(1) Background: 3D printable materials with accurately defined iodine content enable the development and production of radiological phantoms that simulate human tissues, including lesions after contrast administration in medical imaging with X-rays. These phantoms provide accurate, stable and reproducible models with defined iodine concentrations, and 3D printing allows maximum flexibility and minimal development and production time, allowing the simulation of anatomically correct anthropomorphic replication of lesions and the production of calibration and QA standards in a typical medical research facility. (2) Methods: Standard printing resins were doped with an iodine contrast agent and printed using a consumer 3D printer, both (resins and printer) available from major online marketplaces, to produce printed specimens with iodine contents ranging from 0 to 3.0% by weight, equivalent to 0 to 3.85% elemental iodine per volume, covering the typical levels found in patients. The printed samples were scanned in a micro-CT scanner to measure the properties of the materials in the range of the iodine concentrations used. (3) Results: Both mass density and attenuation show a linear dependence on iodine concentration (R2 = 1.00), allowing highly accurate, stable, and predictable results. (4) Conclusions: Standard 3D printing resins can be doped with liquids, avoiding the problem of sedimentation, resulting in perfectly homogeneous prints with accurate dopant content. Iodine contrast agents are perfectly suited to dope resins with appropriate iodine concentrations to radiologically mimic tissues after iodine uptake. In combination with computer-aided design, this can be used to produce printed objects with precisely defined iodine concentrations in the range of up to a few percent of elemental iodine, with high precision and anthropomorphic shapes. Applications include radiographic phantoms for detectability studies and calibration standards in projective X-ray imaging modalities, such as contrast-enhanced dual energy mammography (abbreviated CEDEM, CEDM, TICEM, or CESM depending on the equipment manufacturer), and 3-dimensional modalities like CT, including spectral and dual energy CT (DECT), and breast tomosynthesis.