Intelligent fault diagnosis methods on the basis of two-dimensional (2D) image representation of vibration signals (IRVS) and the convolutional neural network (CNN) have been extensively applied in rotating machinery. However, as a large number of IRVS methods are being used, their performance has not been fairly and comprehensively evaluated, which leads to difficulties for researchers to make choices. To address this issue, this paper conducted a benchmark study aimed at comparing the comprehensive performance of different IRVS methods, including computation time, fault diagnosis accuracy, and noise resistance performance. Firstly, the IRVS methods and the fault diagnosis method combining IRVS and CNN were summarized. Then, the general process of the IRVS-CNN method was proposed. Finally, 17 types of IRVS methods were selected, and the performance of the IRVS method was compared based on three datasets and two classic CNN models. The results indicate that the computing time taken to generate 2D images using unthresholded recurrence plot (UTRP), and frequency-domain unthresholded recurrence plot (FDUTRP) methods is relatively longer. The vast majority of frequency-domain methods and time-frequency domain methods can achieve or approach a high accuracy rate in all experiments, demonstrating their outstanding performance. Frequency-domain color vibration image (FDCVI), FDUTRP, and continuous wavelet transform (CWT) have good noise resistance. These results provide a reference for future researchers in selecting IRVS methods.
Read full abstract