Abstract

The conventional methods for vibration fault detection and diagnosis relies on feature extraction from the waveforms of the vibration signals. This article exploits the scope of image recognition application for the detection and diagnosis of fan vibration faults. In this paper, a novel image recognition technique is proposed for vibration-based fault diagnosis using the spectrum images of the vibration signals. 1D vibration signal spectrum is initially computed using Fast Fourier Transform (FFT) and the FFT frequencies are adjusted such that it captures a vibration spectrum diagram as 2D image representation. FFT based vibration analysis is done and the image recognition concept is utilized for feature extraction and a machine learning classification module is used for fault analysis and diagnosis. Effective feature generation is done using Principal Component Analysis (PCA) by removing the redundancy from the feature vectors and machine learning classifiers are used to obtain improved image recognition and classification performance. Artificial Neural Network (ANN) classifier yields better performance in terms of various performance parameters and percentage improvement in terms of accuracy for ANN classification methods over Support Vector Machine (SVM), k-Nearest Neighbours (kNN) and Random Forest Ensemble (RFE) methods are 10.01 %, 4.51 % and 2.01 % respectively. Comparative scenarios are considered in this work for fan vibration fault detection as well as diagnosis based on the image features for various realistic vibration fault conditions. Effectiveness of the proposed image recognition-based technique is compared with the state-of-the-art methods, justifying its outperformance for fan fault detection and diagnosis using the combination of spectrum adjustment, PCA and ANN classification method.

Highlights

  • The detection as well as diagnosis of various types of faults has become crucial in the modern engineering systems for the encouragement of condition monitoring methods and prevention of system degradations due to early-stage faults

  • The accuracy values of 90.00 %, 94.74 %, 97.06 % and 99.01 % are achieved for Support Vector Machine (SVM), k-Nearest Neighbours (kNN), Random forest ensemble classifier (RFE) and Artificial Neural Network (ANN) classification methods respectively for fan fault detection

  • The comparison reveals that the proposed method outperforms the other state of the art methods in terms of accuracy value thereby, shows its competence for fan fault detection and diagnosis using the combination of spectrum adjustment, Principal Component Analysis (PCA) and ANN classification method

Read more

Summary

Introduction

The detection as well as diagnosis of various types of faults has become crucial in the modern engineering systems for the encouragement of condition monitoring methods and prevention of system degradations due to early-stage faults. These faults if not detected at the early stage, may lead to catastrophic system failures, if they are not diagnosed at the initial stages [1]. The fan faults influence the safety operations of a power plant and its efficient operation determines the reliability, security and economy of the system. These faults provide the real time status evaluation, its accurate diagnosis and repair. The fan-based diagnosis based on the vibration signals are convenient to detect, have wide applicability and have

Objectives
Methods
Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call