Nanohybrids represent a larger variety of functional materials consisting of one or more types of low‐dimensional semiconductor nanostructures, such as quantum dots, nanowires, nanotubes, 2D atomic materials (graphene, transition‐metal dichalcogenides, etc.) interfaced with one another, and/or with conventional material matrices (bulks, films, polymers, etc.). Heterojunction interfaces are characteristic in nanohybrids and play a critical role facilitating synergistic coupling of constituent materials of different functionalities, resulting in excellent electronic, optoelectronic, and mechanical properties. Therefore, nanohybrids provide fresh opportunities for designs of optoelectronic devices of extraordinary performance in addition to the benefits of low cost, large abundance, flexibility, and light weight. Herein, some recent achievements in exploiting new optoelectronic nanohybrids and understanding the underlying physics toward high‐performance optoelectronic nanohybrids that are competitive in commercialization of various optoelectronic devices are highlighted. Using nanohybrid photodetectors as an example, the importance in controlling the heterojunction interfaces and multiscale controlling of optoelectronic process of light absorption, exciton dissociation, photocarrier transfer, and transport from atomic to device scales and how this control impacts the photodetector performance are revealed. The current status, remaining challenges, and future perspectives in optoelectronic nanohybrids are also discussed.