The steroid hormone 20-hydroxyecdysone (20E) plays a critical role in insect development, particularly in larval molting and larval–pupal transition. Studies have indicated that 20E transmits its signal via a G protein-coupled receptor (GPCR)-mediated non-genomic pathway before a genomic pathway is initiated. However, the mechanism by which a 20E signal is desensitized remains unclear. We proposed that β-arrestin1 interacts with ecdysone-responsible GPCR (ErGPCR1) to desensitize a 20E signal in the lepidopteran insect Helicoverpa armigera. Results showed that β-arrestin1 was highly expressed in various tissues during metamorphosis. β-Arrestin1 knockdown by RNA interference in larvae caused advanced pupation and a larval–pupal chimera. The mRNA levels of 20E-response genes were increased after β-arrestin1 was knocked down but were decreased after β-arrestin1 was overexpressed. 20E induced the migration of β-arrestin1 from the cytosol to the cytoplasmic membrane to interact with ErGPCR1. The inhibitors suramin and chelerythrine chloride repressed 20E-induced β-arrestin1 phosphorylation and membrane migration. With ErGPCR1, 20E regulated β-arrestin1 phosphorylation on serines at positions 170 and 234. The double mutation of the amino acids Ser170 and Ser234 to asparagine inhibited phosphorylation and membrane migration of β-arrestin1 in 20E induction. Therefore, 20E via ErGPCR1 and PKC signaling induces β-arrestin1 phosphorylation; phosphorylated β-arrestin1 migrates to the cytoplasmic membrane to interact with ErGPCR1 to block 20E signaling via a feedback mechanism.
Read full abstract