This study thoroughly investigates the influence of anisotropy on the formability of 2024-T3 aluminum alloy sheets using advanced techniques such as digital image correlation (DIC) and Marciniak tests. A key finding is the relatively small variation in anisotropy values across different strain paths and orientations, contrasting with more significant variations reported in other studies. Tests were conducted on nine samples with various geometries to induce specific strain paths, including uniaxial, plane, and balanced biaxial strains, oriented in different directions relative to the rolling direction. The study also provides a detailed analysis of microstructural and mechanical characteristics, such as precipitate distribution and anisotropy behavior, which are crucial for understanding the relationship between microstructure and material formability. The results show that while anisotropy impacts deformation capacity, the differences in formability among the directions were minimal, with slightly greater formability observed in the diagonal direction. These findings are compared with forming limit curves (FLCs), offering an integrated view of how relatively uniform anisotropic properties influence formability. These insights are essential for optimizing the processing and application of 2024-T3 alloy in industrial contexts, emphasizing the importance of understanding anisotropy in the design of metal components.
Read full abstract