Mountain caviar is a fruit of Kochia scoparia that contains momordin Ic as a major saponin constituent. Its extract (MCE) has been shown to suppress blood glucose elevations in the human oral glucose tolerance test (OGTT) as well as increases in blood glucose in OGTT, gastric emptying (GE), and glucose incorporation in the small intestine in rats. However, the effects of MCE and momordin Ic on glucose absorption in mice and these action mechanisms have not been examined for more than 2 decades. Therefore, we herein investigated the effects of MCE, its saponin fraction, and momordin Ic on blood glucose elevations in mice. Mouse blood glucose elevation tests were performed on carbohydrate-loaded mice. The mountain caviar saponin fraction significantly delayed blood glucose elevations in glucose-, sucrose-, and soluble starch-loaded mice. In glucose-loaded mice, the saponin fraction, MCE, and momordin Ic significantly suppressed rapid glucose elevations after glucose loading, but not sucrose loading. A mouse GE study was performed by loading with glucose and phenolphthalein solution. Momordin Ic and MCE strongly suppressed mouse GE. Intestinal glucose absorption was evaluated by the incorporation of 2-deoxyglucose (2-DG) into Caco-2 cell layers and mouse duodenum wall vesicles. The results obtained showed that momordin Ic inhibited the incorporation of 2-DG into Caco-2 cells and mouse duodenum vesicles. Collectively, these results suggest that MCE, particularly the principal saponin, momordin Ic, preferably suppressed glucose-induced blood glucose elevations and delayed carbohydrate-induced glucose elevations in mice. The underlying mechanism was found to involve the suppression of GE and intestinal glucose absorption.