Density-density correlation analysis is a convenient diagnostic tool to reveal the hidden order in the strongly correlated phases of ultracold atoms. We report on a study of the density-density correlations of ultracold bosonic atoms which were initially prepared in a Mott insulator (MI) state in one-dimensional optical lattices. For the atomic gases released from the deep optical lattice, we extracted the normalized density-density correlation function from the atomic density distributions of freely expanded atomic clouds. Periodic bunching peaks were observed in the density-density correlation spectra, as in the case of higher-dimensional lattices. Treating the bosonic gas within each lattice well as a subcondensate without quantum tunneling, we simulated the post-expansion density distribution along the direction of the 1D lattice, and the calculated density-density correlation spectra agreed with our experimental observations.
Read full abstract