Abstract

We study construction and dynamics of two-dimensional (2D) anisotropic vortex–bright (VB) soliton in spinor dipolar Bose–Einstein condensates confined in a 2D optical lattice (OL), with two localized components linearly mixed by the spin–orbit coupling and long-range dipole–dipole interaction (DDI). It is found that the OL and DDI can support stable anisotropic VB soliton in the present setting for arbitrarily small value of norm N. We then present a new method via examining the mean square error of norm share of bright component to implement stability analysis. It is revealed that one can control the stability of anisotropic VB soliton only by adjusting OL depth for a fixed DDI. In addition, the dynamics of the anisotropic VB soliton was studied by applying the kick to them. The mobility of the single kicked VB soliton is Rabbi-like oscillation. However, for the collision dynamics of two kicked anisotropic VB solitons, their properties mainly depend on their initial distance and OL, and they can realize the transition from the bright component to the vortex component. Our work may provide a convenient way to prepare and manipulate anisotropic VB soliton in high-dimensional space.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call