This research applies machine learning to predict soil coherence for Etihad Rail, marking the first comprehensive study in the United Arab Emirates (UAE)'s arid regions. By integrating Sentinel-1 SAR and Sentinel-2 data with MODIS Aerosol Optical Depth (AOD) observations, the study develops detailed models that depict complex soil coherence patterns crucial for urban planning and risk assessment. Findings show variations in soil coherence between operational and under-construction phases, influenced by seasonal changes in aerosol dynamics and sand dust levels. Higher soil coherence is linked with lower annual sand dust deposition and AOD measurements, emphasizing the importance of this data for informed decision-making. The study employs a unique combination of data sources and machine learning algorithms to predict soil coherence, including Support Vector Machine (SVM), Extreme Gradient Boosting (XGBOOST), Gaussian Process Regression (GPR), Random Forest (RF), and 1D Convolutional Neural Network (CNN), with the Random Forest model achieving the lowest root mean squared error (RMSE) of 0.0826. These contributions enhance our understanding and provide a valuable framework for infrastructure development in similar environments.