Acute stress elicits multiple responses in autonomic, endocrine, and immune systems. Cognitive appraisal is believed to be one important modulator of such stress responses. To investigate brain substrates of crosstalks between the homeostasis-maintaining systems accompanying appraisal of stressor controllability, we simultaneously recorded regional cerebral blood flow (rCBF) using 15O-water positron emission tomography, cardiovascular indices (heart rate (HR) and blood pressure (BP)), neuroendocrine indices (concentrations of epinephrine, norepinephrine, and adrenocorticotropic hormone (ACTH) in blood), and immune indices (proportions of subsets of lymphocytes (NK cells, helper T cells, cytotoxic T cells, and B cells) in blood), in 11 male subjects who performed a mental arithmetic task with either high controllability (HC) and low controllability (LC). The LC task resulted in less sense of control in subjects than the HC task. Significant increases of rCBF in the medial and lateral orbitofrontal cortices (OFC), and in the medial and lateral prefrontal cortices (MPFC, LPFC) were observed by subtracting the HC task from the LC task. More importantly, significant positive correlations between rCBF and HR, BP, and NK cells were commonly found in the OFC and MPFC during the LC tasks, but not during the HC tasks. The present results showed for the first time that the prefrontal neural network including the OFC and MPFC might be one pivotal region for bi-directional functional association between the brain and peripheral autonomic and immune activities accompanying appraisal of an acute stressor.