The cooperation between microalgae and bacteria can enhance the carbon fixation efficiency of microalgae. In this study, a microalgae-bacteria coexistence system under high-concentration CO2 stress was constructed, and the bacterial community structure of the entire system was analyzed using the 16S rDNA technique. Microbacterium sp., Bacillus sp., and Aeromonas sp. were screened and demonstrated to promote carbon fixation in Chlorella vulgaris HL 01 (C. vulgaris HL 01). Among them, the Aeromonas sp. + C. vulgaris HL 01 experimental group exhibited the most significant effect, with an increase of about 24% in the final biomass yield and a daily carbon fixation efficiency increase of about 245% (day 7) compared to the control group. Continuous cultivation of microalgae and bacterial symbiosis showed that bacteria could utilize the compounds secreted by microalgae for growth and could produce nutrients to maintain the vitality of microalgae. Detection of extracellular organic compounds of microorganisms in the culture broth by excitation-emission matrix spectral analysis revealed that bacteria utilized the aromatic proteinaceous compounds and others secreted by C. vulgaris HL 01 and produced new extracellular organic compounds required by C. vulgaris HL 01. The metabolic organic substances in the liquids of the experimental groups and the control group were analyzed by liquid chromatography-mass spectrometry, and it was found that 31 unique organic substances of C. vulgaris HL 01 were utilized by bacteria, and 136 new organic substances were produced. These differential compounds were mainly organic acids and their derivatives, benzene compounds, and organic heterocyclic compounds, etc. These results fully demonstrate that the carbon fixation ability and persistence of C. vulgaris HL 01 are improved through material exchange between microalgae and bacteria. This study establishes a method to screen carbon-fixing symbiotic bacteria and verifies that microalgae and bacteria can significantly improve the carbon fixation efficiency of microalgae for high-concentration CO2 through material exchange, providing a foundation for further research of microalgae-bacterial carbon fixation.
Read full abstract