The first metal carboxylate-cyanurates, namely, K(H3C3N3O3)(HCO2) (I) and Ba2(H2C3N3O3)(CH3CO2)3(H2O) (II), which contain π-conjugated carboxylate and cyanurate groups, have been synthesized by hydrothermal methods. They crystallize in centrosymmetric space groups of P1̅ and P21/n, respectively. Compound I exhibits a novel three-dimensional (3D) structure based on a [K(H3C3N3O3)]+ cationic framework with 12-membered ring (12-MR) channels, and the (HCO2)- anions are located within the 12-MR channels. The [K(H3C3N3O3)]+ cationic framework is composed of K+ ions interconnected by H3C3N3O3 ligands. Compound II features a 3D network formed by [Ba2(CH3CO2)3]+ cationic double chains bridged by (H2C3N3O3)- anions. The [Ba2(CH3CO2)3]+ cationic double chain is composed of (CH3CO2)- anions and Ba2+ ions. Optical property measurements show that both compounds exhibit short ultraviolet cutoff edges (I, 208 nm; II, 218 nm) and wide band gaps (I, 5.43 eV; II, 5.20 eV). Importantly, K(H3C3N3O3)(HCO2) (I) features a large birefringence of 0.285@532 nm due to the parallel alignment of π-conjugated H3C3N3O3 and (HCO2)- groups, indicating that K(H3C3N3O3)(HCO2) (I) is a promising short-wave ultraviolet birefringent material. Detailed theoretical calculations elucidate that their excellent optical properties originate from the synergetic effect of both types of π-conjugated groups.