Our aim is to estimate the long-term neurological sequelae and prognosis in term neonatal asphyxia treated with hypothermia via volumetric apparent diffusion coefficient (ADC) map histogram analysis (HA). Brain MRI studies of 83 term neonates with asphyxia who received whole-body hypothermia treatment and examined between postnatal (PN) fourth and sixth days were retrospectively re-evaluated by 2 radiologists. Volumetric HA was performed for the areas frequently affected in deep and superficial asphyxia (thalamus, lentiform nucleus, posterior limb of internal capsule, corpus callosum forceps major, and perirolandic cortex-subcortical white matter) on ADC map. The quantitative ADC values were obtained separately for each region. Qualitative-visual (conventional) MRI findings were also re-evaluated. Neonates were examined neurodevelopmentally according to the Revised Brunet-Lezine scale. The distinguishability of long-term neurodevelopmental outcomes was statistically investigated. With HA, the adverse neurodevelopmental outcomes could only be distinguished from mild-moderated impairment and normal development at the thalamus with 10th percentile ADC (P = .02 and P = .03, respectively) and ADCmin (P = .03 and P = .04, respectively). Also with the conventional MRI findings, adverse outcome could be distinguished from mild-moderated impairment (P = .04) and normal development (P = .04) via cytotoxic oedema of the thalamus, corpus striatum, and diffuse cerebral cortical. The long-term adverse neurodevelopmental outcomes in newborns with asphyxia who received whole-body hypothermia treatment can be estimated similarly with volumetric ADC-HA and the conventional assessment of the ADC map. This study compares early MRI ADC-HA with neurological sequelae in term newborns with asphyxia who received whole-body hypothermia treatment. We could not find any significant difference in predicting adverse neurological sequelae between the visual-qualitative evaluation of the ADC map and HA.