Recovery from anterior cruciate ligament reconstruction (ACLR) induces bilateral functional and physiological adaptations. Neurophysiologic measures of motor control have focused on the involved knee joint, limiting understanding regarding the extent of bilateral neural adaptations. Therefore, the aim of this study was to investigate differences in neural activity during uninvolved-limb motor control after ACLR compared to healthy controls. Methods: Fifteen participants with left ACLR (8 female and 7 male, 21.53 ± 2.7 years, 173.22 ± 10.0 cm, 72.15 ± 16.1 kg, Tegner 7.40 ± 1.1, 43.33 ± 33.1 mo. post-surgery, 2 patellar tendon, and 13 hamstring) and 15 matched controls (8 female, 23.33 ± 2.7 years, 174.92 ± 9.7 cm, 72.14 ± 15.4 kg, Tegner 7.33 ± 1.0) participated. Neural activity was evaluated using functional magnetic resonance imaging on a 3T Siemens Magnetom scanner during four 30-s cycles of a right (uninvolved) knee flexion-extension task paced with a metronome (1.2 Hz) and was completed interspersed with 30 s of rest. A significance threshold of p < 0.05 was used for all analyses, cluster corrected for multiple comparisons, and z-thresholds of >3.1 (subject level), and >2.3 (group level). Results: The ACLR group had greater neural activity in one statistically significant cluster corresponding to the left middle frontal gyrus (MFG) (834 voxels, z = 3.81, p < 0.01 multiple comparisons corrected) compared to controls. Conclusions: These data indicate a potential contribution to uninvolved-knee neuromuscular deficits after injury and support the limitations of using the uninvolved side as a clinical reference. Uninvolved knee motor control after ACLR may require greater cognitive demand. Clinicians should be aware that the uninvolved limb might also demonstrate whole brain alterations limiting clinical inference from functional symmetry.
Read full abstract