Sweet potato (Ipomoea batatas) is an important food crop that plays a pivotal role in preserving worldwide food security. Due to its polyploid genome, high heterogeneity, and phenotypic plasticity, sweet potato genetic characterization and breeding is challenging. Genome-wide association studies (GWASs) can provide important resources for breeders to improve breeding efficiency and effectiveness. GWASpoly was used to identify 28 single nucleotide polymorphisms (SNPs), comprising 21 unique genetic loci, associated with sweet potato storage root traits including dry matter (4 loci), subjective flesh color (5 loci), flesh hue angle (3 loci), and subjective skin color and skin hue angle (9 loci), in 384 accessions from the USDA sweet potato germplasm collection. The I. batatas ‘Beauregard’ and I. trifida reference genomes were utilized to identify candidate genes located within 100 kb from the SNPs that may affect the storage traits of dry matter, flesh color, and skin color. These candidate genes include transcription factors (especially Myb, bHLH, and WRKY family members), metabolite transporters, and metabolic enzymes and associated proteins involved in starch, carotenoid, and anthocyanin synthesis. A greater understanding of the genetic loci underlying sweet potato storage root traits will enable marker-assisted breeding of new varieties with desired traits. This study not only reinforces previous research findings on genes associated with dry matter and β-carotene content but also introduces novel genetic loci linked to these traits as well as other root characteristics.