Abstract
Carotenoids are a class of hydrophobic substances that are important as food and feed colorants and as antioxidants. The pathway for β-carotene synthesis has been expressed in various yeast species, albeit with rather low yields and titers. The inefficient conversion of phytoene to lycopene is often regarded as a bottleneck in the pathway. In this study, we aimed at the improvement of β-carotene production in Saccharomyces cerevisiae by specifically engineering the enzymatic reactions producing and converting phytoene. We show that phytoene is stored in intracellular lipid droplets, whereas the enzyme responsible for its conversion, phytoene dehydrogenase, CrtI, is located at the endoplasmic reticulum, like the bifunctional enzyme CrtYB that catalyses the reaction before and after CrtI. To improve the accessibility of phytoene for CrtI and to delay its storage in lipid droplets, we tested the relocation of CrtI and CrtYB to mitochondria. However, only the retargeting of CrtYB resulted in an improvement of the β-carotene content, whereas the mitochondrial variant of CrtI was not functional. Surprisingly, a cytosolic variant of this enzyme, which we obtained through the elimination of its carboxy-terminal membrane anchor, caused an increase in β-carotene accumulation. Overexpression of this CrtI variant in an optimized medium resulted in a strain with a β-carotene content of 79 mg g-1 cell dry weight, corresponding to a 76-fold improvement over the starting strain. The retargeting of heterologously expressed pathway enzymes improves β-carotene production in S. cerevisiae, implicating extensive inter-organellar transport phenomena of carotenoid precursors. In addition, strong overexpression of carotenoid biosynthetic enzymes and the optimization of cultivation conditions are required for high contents.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.