Year
Publisher
Journal
Institution
1
Institution Country
Publication Type
Field Of Study
Topics
Open Access
Language
Filter 1
Year
Publisher
Journal
Institution
1
Institution Country
Publication Type
Field Of Study
Topics
Open Access
Language
Filter 1
Export
Sort by: Relevance
Anthropogenic uranium signatures in turtles, tortoises, and sea turtles from nuclear sites.

Chelonians (turtles, tortoises, and sea turtles) grow scute keratin in sequential layers over time. Once formed, scute keratin acts as an inert reservoir of environmental information. For chelonians inhabiting areas with legacy or modern nuclear activities, their scute has the potential to act as a time-stamped record of radionuclide contamination in the environment. Here, we measure bulk (i.e. homogenized scute) and sequential samples of chelonian scute from the Republic of the Marshall Islands and throughout the United States of America, including at the Barry M. Goldwater Air Force Range, southwestern Utah, the Savannah River Site, and the Oak Ridge Reservation. We identify legacy uranium (235U and 236U) contamination in bulk and sequential chelonian scute that matches known nuclear histories at these locations during the 20th century. Our results confirm that chelonians bioaccumulate uranium radionuclides and do so sequentially over time. This technique provides both a time series approach for reconstructing nuclear histories from significant past and present contexts throughout the world and the ability to use chelonians for long-term environmental monitoring programs (e.g. sea turtles at Enewetok and Bikini Atolls in the Republic of the Marshall Islands and in Japan near the Fukushima Daiichi reactors).

Read full abstract
Open Access
The first small-bodied ornithopod dinosaur from the Lewisville Formation (middle Cenomanian) of Texas

ABSTRACT Sediments of the Woodbine Group exposed in northeastern Texas were deposited along the southwestern margin of Appalachia as a series of near-shore, shoreline, distal lowland swamp, lake, and fluvial deposits during a regression of the Western Interior Seaway in early and middle Cenomanian time. The Lewisville Formation (upper Woodbine Group) of north Texas preserves the most diverse terrestrial fossil assemblage known from Appalachia, but remains of small ornithischian dinosaurs have been conspicuously absent from it. An almost complete left dentary from the Lewisville Formation represents a new, small-bodied ornithopod taxon, Ampelognathus coheni gen. et sp. nov. The dentary is generally similar to those in non-iguanodontian ornithopods such as Hypsilophodon, Changchunsaurus, Haya, and Convolosaurus. Ampelognathus occupied an expected but previously missing component of the ‘mid’ Cretaceous terrestrial fauna of southwestern Appalachia. The growing diversity of fossil vertebrates and renewed paleobotanical study in the Lewisville Formation reinforces the importance of the unit’s fossil record for understanding eastern North American terrestrial ecosystems during an important transitional period in the earliest Late Cretaceous.http://zoobank.org/urn:lsid:zoobank.org:pub:02642649-ED6F-483A-994A-EC5F3FDF2AC7

Read full abstract
Open Access
Ancient diversity and turnover of cunninghamioid conifers (Cupressaceae): two new genera from the Upper Cretaceous of Hokkaido, Japan

Conifers of the taxodiaceous grade of Cupressaceae were more diverse and widespread during the Mesozoic than they are today. The earliest diverging subfamily, Cunninghamioideae, only includes a single extant genus, but has at least 10 fossil genera. Here, two additional cunninghamioid genera are characterized on the basis of permineralized seed cones from the Upper Cretaceous of Hokkaido, Japan. These conifers display seed cone characters typical of cunninghamioids; however, they have a mosaic of characters that are not seen in any reported conifer of Cupressaceae. They are, therefore, designated as two new extinct species: Ohanastrobus hokkaidoensis gen. et sp. nov. and Nishidastrobus japonicum gen. et sp. nov. These newly reported conifers expand the taxonomic and morphological diversity of cunninghamioids. The stratigraphic and paleobiogeographic records of cunninghamioids and other fossil Cupressaceae with foliate seed cones indicate they peak in diversity during the Cretaceous. The living genera Taiwania and Cunninghamia appear during the Albian and Campanian, respectively, and maintain a nearly continuous fossil record through to today, while nearly all other extinct genera of Cupressaceae with foliate cones disappear by the close of the Campanian. As more ancient cunninghamioids are recovered, our understanding of macroevolutionary patterns of this once diverse lineage will be further elucidated.

Read full abstract
Testing a global standard for quantifying species recovery and assessing conservation impact.

Recognizing the imperative to evaluate species recovery and conservation impact, in 2012 the International Union for Conservation of Nature (IUCN) called for development of a "Green List of Species" (now the IUCN Green Status of Species). A draft Green Status framework for assessing species' progress toward recovery, published in 2018, proposed 2 separate but interlinked components: a standardized method (i.e., measurement against benchmarks of species' viability, functionality, and preimpact distribution) to determine current species recovery status (herein species recovery score) and application of that method to estimate past and potential future impacts of conservation based on 4 metrics (conservation legacy, conservation dependence, conservation gain, and recovery potential). We tested the framework with 181 species representing diverse taxa, life histories, biomes, and IUCN Red List categories (extinction risk). Based on the observed distribution of species' recovery scores, we propose the following species recovery categories: fully recovered, slightly depleted, moderately depleted, largely depleted, critically depleted, extinct in the wild, and indeterminate. Fifty-nine percent of tested species were considered largely or critically depleted. Although there was a negative relationship between extinction risk and species recovery score, variation was considerable. Some species in lower risk categories were assessed as farther from recovery than those at higher risk. This emphasizes that species recovery is conceptually different from extinction risk and reinforces the utility of the IUCN Green Status of Species to more fully understand species conservation status. Although extinction risk did not predict conservation legacy, conservation dependence, or conservation gain, it was positively correlated with recovery potential. Only 1.7% of tested species were categorized as zero across all 4 of these conservation impact metrics, indicating that conservation has, or will, play a role in improving or maintaining species status for the vast majority of these species. Based on our results, we devised an updated assessment framework that introduces the option of using a dynamic baseline to assess future impacts of conservation over the short term to avoid misleading results which were generated in a small number of cases, and redefines short term as 10 years to better align with conservation planning. These changes are reflected in the IUCN Green Status of Species Standard.

Read full abstract
Open Access
Trypanosoma cruzi and Incidental Sarcocystis spp. in Endangered Ocelots (Leopardus pardalis) of South Texas, USA.

The federally endangered ocelot (Leopardus pardalis) population of south Texas, USA is declining; fewer than an estimated 80 ocelots remain. South Texas has robust transmission of Trypanosoma cruzi, the protozoan parasite causing Chagas disease in humans and various mammals. This parasite's impact in ocelots is unknown. Blood from live-trapped ocelots was collected by US Fish and Wildlife Service personnel in an annual monitoring program; additionally, tissues were obtained from carcasses collected from 2010 to 2017 around Laguna Atascosa National Wildlife Refuge in south Texas and placed in scientific collections. Variable samples were available from 21 ocelots: skeletal muscle (n=15), heart tissue (n=5), lung (n=1), kidney (n=1), spleen (n=1), liver (n=1), blood clot (n=9), and serum (n=3). Overall, 3/21 (14.3%) ocelots showed evidence of T. cruzi infection or exposure, with T. cruzi PCR-positive samples of skeletal muscle, heart, and blood clot, respectively. All three were infected with the T. cruzi discrete taxonomic unit "TcI"; one of these ocelots also had anti-T. cruzi antibodies. Lymphoplasmacytic inflammation was noted in the PCR-positive heart tissue and in some PCR-negative tissues from this and other individuals. Incidentally, Sarcocystis spp. were noted histologically in five ocelots. Trypanosoma cruzi infection and associated cardiac lesions suggest that this parasite should be further investigated in vulnerable populations.

Read full abstract
Open Access
Inferring the Total-Evidence Timescale of Marattialean Fern Evolution in the Face of Model Sensitivity.

Phylogenetic divergence-time estimation has been revolutionized by two recent developments: 1) total-evidence dating (or "tip-dating") approaches that allow for the incorporation of fossils as tips in the analysis, with their phylogenetic and temporal relationships to the extant taxa inferred from the data and 2) the fossilized birth-death (FBD) class of tree models that capture the processes that produce the tree (speciation, extinction, and fossilization) and thus provide a coherent and biologically interpretable tree prior. To explore the behavior of these methods, we apply them to marattialean ferns, a group that was dominant in Carboniferous landscapes prior to declining to its modest extant diversity of slightly over 100 species. We show that tree models have a dramatic influence on estimates of both divergence times and topological relationships. This influence is driven by the strong, counter-intuitive informativeness of the uniform tree prior, and the inherent nonidentifiability of divergence-time models. In contrast to the strong influence of the tree models, we find minor effects of differing the morphological transition model or the morphological clock model. We compare the performance of a large pool of candidate models using a combination of posterior-predictive simulation and Bayes factors. Notably, an FBD model with epoch-specific speciation and extinction rates was strongly favored by Bayes factors. Our best-fitting model infers stem and crown divergences for the Marattiales in the mid-Devonian and Late Cretaceous, respectively, with elevated speciation rates in the Mississippian and elevated extinction rates in the Cisuralian leading to a peak diversity of n}{}{sim}2800 species at the end of the Carboniferous, representing the heyday of the Psaroniaceae. This peak is followed by the rapid decline and ultimate extinction of the Psaroniaceae, with their descendants, the Marattiaceae, persisting at approximately stable levels of diversity until the present. This general diversification pattern appears to be insensitive to potential biases in the fossil record; despite the preponderance of available fossils being from Pennsylvanian coal balls, incorporating fossilization-rate variation does not improve model fit. In addition, by incorporating temporal data directly within the model and allowing for the inference of the phylogenetic position of the fossils, our study makes the surprising inference that the clade of extant Marattiales is relatively young, younger than any of the fossils historically thought to be congeneric with extant species. This result is a dramatic demonstration of the dangers of node-based approaches to divergence-time estimation, where the assignment of fossils to particular clades is made a priori (earlier node-based studies that constrained the minimum ages of extant genera based on these fossils resulted in much older age estimates than in our study) and of the utility of explicit models of morphological evolution and lineage diversification. [Bayesian model comparison; Carboniferous; divergence-time estimation; fossil record; fossilized birth–death; lineage diversification; Marattiales; models of morphological evolution; Psaronius; RevBayes.]

Read full abstract
Open Access