Year
Publisher
Journal
1
Institution
Institution Country
Publication Type
Field Of Study
Topics
Open Access
Language
Filter 1
Year
Publisher
Journal
1
Institution
Institution Country
Publication Type
Field Of Study
Topics
Open Access
Language
Filter 1
Export
Sort by: Relevance
Privacy by Projection: Federated Population Density Estimation by Projecting on Random Features.

We consider the problem of population density estimation based on location data crowdsourced from mobile devices, using kernel density estimation (KDE). In a conventional, centralized setting, KDE requires mobile users to upload their location data to a server, thus raising privacy concerns. Here, we propose a Federated KDE framework for estimating the user population density, which not only keeps location data on the devices but also provides probabilistic privacy guarantees against a malicious server that tries to infer users' location. Our approach Federated random Fourier feature (RFF) KDE leverages a random feature representation of the KDE solution, in which each user's information is irreversibly projected onto a small number of spatially delocalized basis functions, making precise localization impossible while still allowing population density estimation. We evaluate our method on both synthetic and real-world datasets, and we show that it achieves a better utility (estimation performance)-vs-privacy (distance between inferred and true locations) tradeoff, compared to state-of-the-art baselines (e.g., GeoInd). We also vary the number of basis functions per user, to further improve the privacy-utility trade-off, and we provide analytical bounds on localization as a function of areal unit size and kernel bandwidth.

Read full abstract
Open Access
Genome Reconstruction Attacks Against Genomic Data-Sharing Beacons.

Sharing genome data in a privacy-preserving way stands as a major bottleneck in front of the scientific progress promised by the big data era in genomics. A community-driven protocol named genomic data-sharing beacon protocol has been widely adopted for sharing genomic data. The system aims to provide a secure, easy to implement, and standardized interface for data sharing by only allowing yes/no queries on the presence of specific alleles in the dataset. However, beacon protocol was recently shown to be vulnerable against membership inference attacks. In this paper, we show that privacy threats against genomic data sharing beacons are not limited to membership inference. We identify and analyze a novel vulnerability of genomic data-sharing beacons: genome reconstruction. We show that it is possible to successfully reconstruct a substantial part of the genome of a victim when the attacker knows the victim has been added to the beacon in a recent update. In particular, we show how an attacker can use the inherent correlations in the genome and clustering techniques to run such an attack in an efficient and accurate way. We also show that even if multiple individuals are added to the beacon during the same update, it is possible to identify the victim's genome with high confidence using traits that are easily accessible by the attacker (e.g., eye color or hair type). Moreover, we show how a reconstructed genome using a beacon that is not associated with a sensitive phenotype can be used for membership inference attacks to beacons with sensitive phenotypes (e.g., HIV+). The outcome of this work will guide beacon operators on when and how to update the content of the beacon and help them (along with the beacon participants) make informed decisions.

Read full abstract
Open Access