Sort by
Relative acceleration of orthonormal basis vectors for the geometric conduction blocks of the cardiac electric signal propagation on anisotropic curved surfaces

Geometric conduction blocks stop cardiac electric propagation due to the shape or conductivity properties of the domain. The blocks are considered to cause many abnormal cardiac electric propagations, leading to cardiac electrophysiological pathologies, such as cardiac fibrillation and arrhythmia. Locating such multidimensional conduction blocks is challenging, particularly in a complex domain with a complex shape and strong anisotropy, such as the heart. To address this problem, we propose a novel mathematical model of the geometric conduction block using the relative acceleration adopted from space-time physics. An efficient numerical scheme for the mathematical model is also proposed to predict the unidirectional conduction block effectively, even in a complex domain. The relative acceleration in the cardiac electric propagation corresponds to the sink-source relationship between the excited (after repolarization) and excitable (before depolarization) cardiac cells, representing the geometric growth rate of the volume of metric balls. The trajectory is constructed from the wavefront of diffusion-reaction equations by aligning orthonormal basis vectors along the gradient of the action potential. Relative acceleration is computed along the propagational direction from the connection 1-form of the basis vectors. The proposed mathematical model and numerical scheme are applied to demonstrate geometric conduction blocks in two-dimensional (2D) simple curved domains with strong anisotropy.

Open Access
Relevant
Fast hierarchical low-rank view factor matrices for thermal irradiance on planetary surfaces

We present an algorithm for compressing the radiosity view factor model commonly used in radiation heat transfer and computer graphics. We use a format inspired by the hierarchical off-diagonal low rank format, where elements are recursively partitioned using a quadtree or octree and blocks are compressed using a sparse singular value decomposition—the hierarchical matrix is assembled using dynamic programming. The motivating application is time-dependent thermal modeling on vast planetary surfaces, with a focus on permanently shadowed craters which receive energy through indirect irradiance. In this setting, shape models are comprised of a large number of triangular facets which conform to a rough surface. At each time step, a quadratic number of triangle-to-triangle scattered fluxes must be summed; that is, as the sun moves through the sky, we must solve the same view factor system of equations for a potentially unlimited number of time-varying righthand sides. We first conduct numerical experiments with a synthetic spherical cap-shaped crater, where the equilibrium temperature is analytically available. We also test our implementation with triangle meshes of planetary surfaces derived from digital elevation models recovered by orbiting spacecraft. Our results indicate that the compressed view factor matrix can be assembled in quadratic time, which is comparable to the time it takes to assemble the full view matrix itself. Memory requirements during assembly are reduced by a large factor. Finally, for a range of compression tolerances, the size of the compressed view factor matrix and the speed of the resulting matrix vector product both scale linearly (as opposed to quadratically for the full matrix), resulting in orders of magnitude savings in processing time and memory space.

Open Access
Relevant
A conformal mapping approach to modelling two-dimensional stratified flow

Herein we describe a new approach to modelling inviscid two-dimensional stratified flows in a general domain. The approach makes use of a conformal map of the domain to a rectangle. In this transformed domain, the equations of motion are largely unaltered, and in particular Laplace's equation remains unchanged. This enables one to construct exact solutions to Laplace's equation and thereby enforce all boundary conditions.An example is provided for two-dimensional flow under the Boussinesq approximation, though the approach is much more general (albeit restricted to two-dimensions). This example is motivated by flow under a weir in a tidal estuary. Here, we discuss how to use a dynamically-evolving conformal map to model changes in the water height on either side of the weir, though the example presented keeps these heights fixed due to limitations in the computational speed to generate the conformal map.The numerical approach makes use of contour advection, wherein material buoyancy contours are advected conservatively by the local fluid velocity, while a dual contour-grid representation is used for the vorticity in order to account for vorticity generation from horizontal buoyancy gradients. This generation is accurately estimated by using the buoyancy contours directly, rather than a gridded version of the buoyancy field. The result is a highly-accurate, efficient numerical method with extremely low levels of numerical damping.

Open Access
Relevant