Sort by
Comparative study of a hybrid research vessel utilizing batteries or hydrogen fuel cells

The Scripps Institution of Oceanography (SIO) current coastal/local research vessel, the R/V Robert Gordon Sproul, is nearing the end of its service life and will soon require replacement. This study compares three potential variants for an R/V Sproul replacement vessel (SRV): a Baseline SRV consisting of a traditional diesel-electric powertrain, a Battery Hybrid SRV (battery/diesel-electric) and a Hydrogen Hybrid SRV (hydrogen fuel cell/diesel-electric). All three variants meet the science mission requirements of the SRV but with varying levels of zero-emission runtime, energy efficiency and emissions. The Battery Hybrid SRV can provide 2.5 h of zero emissions (battery only) operation, but could not complete any of the identified SRV science missions without also engaging the diesel generators. In contrast, the Hydrogen Hybrid SRV can provide 23.4 h of zero emission (hydrogen only) runtime, and can complete 74% of the SRV science missions solely with zero-emission operation. The superior performance of the Hydrogen Hybrid SRV is attributable to the higher volumetric energy storage density of the LH2/fuel cell combination. The capital costs of these vessels are estimated to be: ∼ $21.4 M for the diesel-electric Baseline SRV, ∼ $26.0 M for the Battery Hybrid SRV vessel and ∼ $34.4 M for the Hydrogen Hybrid SRV. The “well-to-waves” (WTW) greenhouse gas (GHG) and criteria pollutant emissions were estimated using various sourcings for the diesel fuel, electricity and hydrogen fuel. The lowest emission levels are achieved with the Hydrogen Hybrid variant using 100% renewable hydrogen. The annual WTW GHG emissions from the Hydrogen Hybrid using renewable LH2 in combination with fossil diesel in the hybrid arrangement yields a 26.7% GHG emissions reduction from the Baseline vessel using fossil-derived diesel fuel. The Battery Hybrid vessel with 100% renewable electricity combined with diesel fuel provides a 6.9% reduction in GHG emissions. Similar results are seen for the criteria pollutant emissions. The hybrid vessels are also compared with regard to operational safety. The study reveals that hydrogen fuel-cell technology provides an effective hybrid supplement to diesel power for a coastal/local research vessel.

Open Access
Relevant
An investigation on the impacts of passive and semiactive structural control on a fixed bottom and a floating offshore wind turbine

AbstractThe application of structural control to offshore wind turbines (OWTs) using tuned mass dampers (TMDs) has shown to be effective in reducing the system loads. The parameters of a magnetorheological (MR) damper modeled by the Bouc‐Wen model are modified to utilize it as a damping device of the TMD. Rather than showcasing the intricate design policy, this research focuses on the availability of the MR damper model on TMDs and its significance on structural control. The impact of passive and semiactive (S‐A) TMDs applied to both fixed bottom and floating OWTs is evaluated under the fatigue limit state (FLS) and the ultimate limit state (ULS). Different S‐A control logics based on the ground hook (GH) control policy are implemented, and the frequency response of each algorithm is investigated. It is shown that the performance of each algorithm varies according to the load conditions such as a normal operation and an extreme case. Fully coupled time domain simulations are conducted through a newly developed simulation tool, integrated into FASTv8. Compared with the passive TMD, it is shown that the S‐A TMD results in higher load reductions with smaller strokes under both the FLS and the ULS conditions. The S‐A TMD using displacement‐based GH control is capable of reducing the fore‐aft and side‐to‐side damage equivalent loads for the monopile by approximately 12% and 64%, respectively. The ultimate loadings at the tower base for the floating substructure are reduced by 9% with the S‐A TMD followed by inverse velocity‐based GH control (IVB‐GH).

Open Access
Relevant
Load Mitigation on Floating Offshore Wind Turbines With Advanced Controls and Tuned Mass Dampers

General Electric, the National Renewable Energy Laboratory (NREL), the University of Massachusetts Amherst (UMass), and Glosten have recently completed a US Department of Energy (DOE)-funded research program to study technologies for mitigating loads on floating offshore wind turbines through the use of advanced turbine controls and tuned mass dampers (TMDs). The analysis was based upon the Glosten PelaStar tension leg platform (TLP) with GE Haliade 150 turbine, a system developed in a previous front end engineering design (FEED) study funded by the Energy Technology Institute (ETI) in the UK. The platform was designed for the WaveHub wave energy research site, with a mean water depth of 59-m. Loads were analyzed by running time-domain simulations in four 50-year return period (50-YRP) ultimate load state (ULS) conditions and 77 fatigue load state (FLS) environmental conditions. In 50-YRP conditions advanced controls are not active. The influence of TMDs on ULS loads have been reported previously (Park et al. [2]). In FLS conditions advanced controls and TMDs afford dramatic reductions in fatigue damage, offering the potential of significant savings in tower structural requirements. Simulations in turbine idling conditions were run in OrcaFlex, and simulations in operating conditions were run in FAST. Simulations were run with a baseline turbine controller, representative of the current state of the art, and an advanced controller developed by NREL to use collective and individual blade pitch control to maintain rotor speed and reduce tower loads. UMass developed a number of TMD types, with varying system configurations, including passive nonlinear dampers and semi-actively controlled dampers with an inverse velocity groundhook control algorithm. Loads and accelerations in FLS conditions were evaluated on the basis of damage equivalent loads (DELs), and fatigue damage was computed by Miner’s summations of stress cycles at the tower base. To study sensitivity to water depth, loads were analyzed at both the 59-m WaveHub depth and a more commercially realistic depth of 100 m. TMDs reduce fatigue damage at the tower-column interface flange by up to 52% in 59-m water depth and up to 28% in 100 m water depth. Advanced controls reduce fatigue damage at the tower-column flange by up to 22% in 59-m water depth and up to 40% in 100 m water depth. The most effective load-mitigation strategy is combining advanced controls with TMDs. This strategy affords a 71% reduction in fatigue damage in both 59-m and 100-m water depths.

Open Access
Relevant