Abstract

Abstract Control algorithms play an important role in energy capture and load mitigation for offshore floating wind turbines (OFWTs). One of the advanced and effective control techniques is the feedforward or model predictive control approach, which requires the forecast of incoming environment conditions. For OFWTs, wave loading is one of the dominant sources to excite structural responses. This study is thus motivated to develop forecasting algorithms for wave elevations and wave excitation forces with the purpose of applying feedforward controllers on OFWTs. Two forecasting algorithms, the approximate Prony Method based on ESPRIT (Estimation of Signal Parameters via Rotational Invariance Techniques) and SVM (Support Vector Machine) regression, are developed and validated using wave records from tank tests. Utilizing the forecasted wave elevations and wave excitation forces, a feedforward LQR controller is designed to mitigate structural loads of an OFWT system.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.