Sort by
Electrochemically Enhanced Forward Osmosis Processes Unlocking Efficiency and Versatility

AbstractThe growing interest in forward osmosis (FO) for water reclamation and desalination over the past two decades stems from its potential for lower energy consumption. Despite its promise, FO faces significant challenges, such as the lack of an appropriate draw solute, concentration polarization, membrane fouling, and reverse solute flux (RSF). Recent trends in research have focused on combining various technologies with FO to address these challenges. Notably, the integration of electrochemical technologies with FO offers new possibilities. This review covers FO combined with electrochemical cells (FO‐ECs), categorizing them based on their working principles and applications in improving FO. The review discusses different FO‐EC configurations, including (1) electrodialysis‐combined FO for RSF, (2) electro‐FO for water flux enhancement, and (3) electrochemical oxidation‐combined FO and FO with electro‐conductive membranes for self‐cleaning and fouling mitigation. Additionally, it covers (4) reusable electro‐responsive draw solutes, (5) electrochemical osmosis systems for metal removal and energy production, and (6) osmotic microbial fuel cells for energy recovery and other benefits. The review also assesses the practical applicability and potential for achieving carbon neutrality of the FO‐ECs. It concludes with a forward‐looking perspective, outlining future research directions to optimize and expand the use of electrochemical‐enhanced FO technologies.

Open Access
Relevant
Two‐Dimensional Layered Hydroxide Materials for Nucleophile Oxidation

AbstractThe global energy crisis highlights the need to transition from fossil fuels to sustainable, renewable sources of energy. Green hydrogen produced via renewable energy‐driven water electrolysis is an emerging alternative due to its zero emissions and high energy density. To address the high energy consumption of water electrolysis, innovative hybrid electrolyzers integrating nucleophile oxidation reactions (NOR) are under activity investigation, reducing energy demands and enabling valuable product synthesis and waste treatment, thereby enhancing the efficiency and economic viability of hydrogen production via electrocatalytic technologies. Recent advancements in layered hydroxide materials (LHMs) have markedly improved the efficiency of alkaline electrochemical conversion processes and are gaining prominence in NORs due to their expansive surface areas and tailorable characteristics through diverse engineering strategies. Further, their layered architecture is readily conducive to in‐situ characterization, using techniques like XAS, XRD, Raman, and IR spectroscopy, providing insights into their anodic NOR mechanisms. This review summarizes the latest developments in LHMs as electrocatalysts for NOR, discusses current design strategies of LHMs, and emphasizes the significance of operando characterization techniques in elucidating the reaction mechanisms of different LHMs. Finally, the future challenges and potential advancements in their scale‐up application in electrocatalytic NOR are put forward.

Open Access
Relevant