64,041,209 publications found
Sort by
On Critical Density for Coverage and Connectivity in Directional Sensor Network over Stochastic Channels Using Continuum Percolation

Sensing coverage, which is one of vital issues in the design of wireless sensor networks (WSNs), can usually interact with other performance metrics such as network connectivity and energy consumption. Whatever the metrics, the fundamental problem is to know at least how many sensor nodes are needed to maintain both sensing coverage and network connectivity. In this paper, we propose a Percolation Model on Novel Gilbert Graph (PM-NGG) to obtain the critical density at which the network can become fully covered and connected considering the similarity between the occurrence of percolation and the formation of a covered and connected network. The PM-NGG is based on directional sensor network where sensors are assigned a determined sensing direction with angular intervals varying from 0 to 2 π. Furthermore, we define the sensing and communication model in directional sensor network in presence of channel randomness including deterministic path attenuation, shadow fading, and multipath fading. Besides, we discuss the coverage and connectivity together as a whole under the proposed model. It is worth mentioning that the theoretical analysis and simulation results of the relationship between critical density and transmitting power give insights into the design of directional sensor network in practice.

Open Access
Relevant
Energy-Efficient Long-Range Sectored Antenna for Directional Sensor Network Applications

The popularity of Directional Sensor Network (DSN) is increasing due to their improved transmission range, spectral reusability, interference mitigation, and energy efficiency. In this paper, the radio module of the DSN is implemented using an eight-sector antenna array. Two types of sectored antennas, namely the Rectangular Patch Sectored Antenna (RPSA) and the Triangular Patch Sectored Antenna (TPSA), are proposed to operate at frequency of 2.4 GHz ISM band. The RPSA has a half-power beamwidth (HPBW) of 45° and a peak gain of 5.2 dBi, while the TPSA has an HPBW of 48° and a peak gain of 4.16 dBi. The design and performance evaluation of RPSA and TPSA in terms of gain, reflection characteristics (|S11|), and HPBW are conducted using Ansys High Frequency Structure Simulator (HFSS) and Vector Network Analyzer (VNA). To demonstrate the concept, the fabricated sectored antennas are connected to MicaZ Wireless Sensor Network (WSN) nodes using an indigenously designed Single Pole 8 Throw (SP8T) Radio Frequency (RF) switchboard. The performance of the DSNs based on RPSA and TPSA is evaluated using the Cooja simulator and a testbed consisting of MicaZ nodes. The results show that RPSA outperforms TPSA and omnidirectional-based WSNs in terms of power consumption, received signal strength, and packet delivery ratio.

Relevant
Scheduling algorithms for extending directional sensor network lifetime

Recently, directional sensor networks that are composed of a large number of directional sensors have attracted a great deal of attention. The main issues associated with the directional sensors are limited battery power and restricted sensing angle. Therefore, monitoring all the targets in a given area and, at the same time, maximizing the network lifetime has remained a challenge. As sensors are often densely deployed, a promising approach to conserve the energy of directional sensors is developing efficient scheduling algorithms. These algorithms partition the sensor directions into multiple cover sets each of which is able to monitor all the targets. The problem of constructing the maximum number of cover sets has been modeled as the multiple directional cover sets (MDCS), which has been proved to be an NP-complete problem. In this study, we design two new scheduling algorithms, a greedy-based algorithm and a learning automata (LA)-based algorithm, in order to solve the MDCS problem. In order to evaluate the performance of the proposed algorithms, several experiments were conducted. The obtained results demonstrated the efficiency of both algorithms in terms of extending the network lifetime. Simulation results also revealed that the LA-based algorithm was more successful compared to the greedy-based one in terms of prolonging network lifetime.

Relevant