Abstract

The popularity of Directional Sensor Network (DSN) is increasing due to their improved transmission range, spectral reusability, interference mitigation, and energy efficiency. In this paper, the radio module of the DSN is implemented using an eight-sector antenna array. Two types of sectored antennas, namely the Rectangular Patch Sectored Antenna (RPSA) and the Triangular Patch Sectored Antenna (TPSA), are proposed to operate at frequency of 2.4 GHz ISM band. The RPSA has a half-power beamwidth (HPBW) of 45° and a peak gain of 5.2 dBi, while the TPSA has an HPBW of 48° and a peak gain of 4.16 dBi. The design and performance evaluation of RPSA and TPSA in terms of gain, reflection characteristics (|S11|), and HPBW are conducted using Ansys High Frequency Structure Simulator (HFSS) and Vector Network Analyzer (VNA). To demonstrate the concept, the fabricated sectored antennas are connected to MicaZ Wireless Sensor Network (WSN) nodes using an indigenously designed Single Pole 8 Throw (SP8T) Radio Frequency (RF) switchboard. The performance of the DSNs based on RPSA and TPSA is evaluated using the Cooja simulator and a testbed consisting of MicaZ nodes. The results show that RPSA outperforms TPSA and omnidirectional-based WSNs in terms of power consumption, received signal strength, and packet delivery ratio.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call