Year
Publisher
Journal
Institution
1
Institution Country
Publication Type
Field Of Study
Topics
Open Access
Language
Filter 1
Year
Publisher
Journal
Institution
1
Institution Country
Publication Type
Field Of Study
Topics
Open Access
Language
Filter 1
Export
Sort by: Relevance
Strategic Model for Yellow Hydrogen Production Using the Metalog Family of Probability Distributions

Storing energy in hydrogen has been recognized by scientists as one of the most effective ways of storing energy for many reasons. The first of these reasons is the availability of technology for producing hydrogen from water using electrolytic methods. Another aspect is the availability of relatively cheap energy from renewable energy sources. Moreover, you can count on the availability of large amounts of this energy. The aim of this article is to support the decision-making processes related to the production of yellow hydrogen using a strategic model which exploits the metalog family of probability distributions. This model allows us to calculate, with accuracy regarding the probability distribution, the amount of energy produced by photovoltaic systems with a specific peak power. Using the model in question, it is possible to calculate the expected amount of electricity produced daily from the photovoltaic system and the corresponding amount of yellow hydrogen produced. Such a strategic model may be appropriate for renewable energy developers who build photovoltaic systems intended specifically for the production of yellow and green hydrogen. Based on our model, they can estimate the size of the photovoltaic system needed to produce the assumed hydrogen volume. The strategic model can also be adopted by producers of green and yellow hydrogen. Due to precise calculations, up to the probability distribution, the model allows us to calculate the probability of providing the required energy from a specific part of the energy mix.

Read full abstract
Open Access
The Synergistic Effect of Reduced Graphene Oxide and Proteasome Inhibitor in the Induction of Apoptosis through Oxidative Stress in Breast Cancer Cell Lines.

Reduced graphene oxide (rGO) and a proteasome inhibitor (MG-132) are some of the most commonly used compounds in various biomedical applications. However, the mechanisms of rGO- and MG-132-induced cytotoxicity remain unclear. The aim of this study was to investigate the anticancer effect of rGO and MG-132 against ZR-75-1 and MDA-MB-231 breast cancer cell lines. The results demonstrated that rGO, MG-132 or a mix (rGO + MG-132) induced time- and dose-dependent cytotoxicity in ZR-75-1 and MDA-MB-231 cells. Apart from that, we found that treatment with rGO and MG-132 or the mix increased apoptosis, necrosis and induction of caspase-8 and caspase-9 activity in both breast cancer cell lines. Apoptosis and caspase activation were accompanied by changes in the ultrastructure of mitochondria in ZR-75-1 and MDA-MB-231 cells incubated with rGO. Additionally, in the analyzed cells, we observed the induction of oxidative stress, accompanied by increased apoptosis and cell necrosis. In conclusion, oxidative stress induces apoptosis in the tested cells. At the same time, both mitochondrial and receptor apoptosis pathways are activated. These studies provided new information on the molecular mechanisms of apoptosis in the ZR-75-1 and MDA-MB-231 breast cancer cell lines.

Read full abstract
Open Access
Comparative pharmacokinetics of intravenous and subcutaneous pantoprazole in sheep and goats

Abomasal ulcers are a significant concern in intensive animal farming due to their impact on animal health and productivity. While proton pump inhibitors (PPIs) such as pantoprazole (PTZ) show promise in treating these ulcers, data on PTZ's pharmacokinetics (PK) in adult goats and sheep are limited. This study aims to fill this gap by investigating and comparing PTZ's PK in these species following single intravenous (IV) and subcutaneous (SC) administrations. Five healthy male goats and sheep were included in the study. PTZ concentrations in plasma samples were determined using a validated analytical method. Non-compartmental analysis was conducted, and statistical comparisons were made between IV and SC administrations and between species. Sheep and goats showed similar systemic exposure levels regardless of the administration route. However, sheep had a shorter t1/2 due to a higher Vd compared to goats. Cl values were comparable in both species, with low extraction ratio values. There were no significant differences in Cmax and Tmax between the two species with regards to SC administration, and complete bioavailability was observed. The MAT exceeded the t1/2 in both species, indicating a potential flip-flop phenomenon. Considering the AUC as a predictor for drug efficacy, and observing no significant differences in systemic exposure between sheep and goats for any route of administration, dosage adjustment between the two species may not be necessary. In field settings, SC administration proves more practical, providing not only complete bioavailability but also a longer half-life compared to IV. Further studies are warranted to explore the PK/PD of PTZ in small ruminants with abomasal ulcers, to fully comprehend its therapeutic efficacy in such scenarios.

Read full abstract
Open Access
Biofortification of Plant- and Animal-Based Foods in Limiting the Problem of Microelement Deficiencies-A Narrative Review.

With a burgeoning global population, meeting the demand for increased food production presents challenges, particularly concerning mineral deficiencies in diets. Micronutrient shortages like iron, iodine, zinc, selenium, and magnesium carry severe health implications, especially in developing nations. Biofortification of plants and plant products emerges as a promising remedy to enhance micronutrient levels in food. Utilizing agronomic biofortification, conventional plant breeding, and genetic engineering yields raw materials with heightened micronutrient contents and improved bioavailability. A similar strategy extends to animal-derived foods by fortifying eggs, meat, and dairy products with micronutrients. Employing "dual" biofortification, utilizing previously enriched plant materials as a micronutrient source for livestock, proves an innovative solution. Amid biofortification research, conducting in vitro and in vivo experiments is essential to assess the bioactivity of micronutrients from enriched materials, emphasizing digestibility, bioavailability, and safety. Mineral deficiencies in human diets present a significant health challenge. Biofortification of plants and animal products emerges as a promising approach to alleviate micronutrient deficiencies, necessitating further research into the utilization of biofortified raw materials in the human diet, with a focus on bioavailability, digestibility, and safety.

Read full abstract
Open Access
Effect of the Addition of Dandelion (Taraxacum officinale) on the Protein Profile, Antiradical Activity, and Microbiological Status of Raw-Ripening Pork Sausage.

The study evaluated the effect of adding dandelion extract on the characteristics of raw-ripening pork sausages while reducing the nitrite addition from 150 to 80 mg/kg. The sausages were made primarily from pork ham (80%) and pork jowl (20%). The process involved curing, preparing the meat stuffing, forming the links, and then subjecting the sausages to a 21-day ripening period. Physicochemical parameters such as pH, water activity, and oxidation-reduction potential were compared at the beginning of production and after the ripening process. The study also examined the impact of ripening on protein metabolism in pork sausages and compared the protein profiles of different sausage variants. The obtained research results indicate that dandelion-leaf extract (Taraxacum officinale) were rich in phenolic acids, flavonoids, coumarins, and their derivatives (LC-QTOF-MS method). Antiradical activity test against the ABTS+* and DPPH radical, and the TBARS index, demonstrated that addition of dandelion (0.5-1%) significantly improved the oxidative stability of raw-ripening sausages with nitrite content reduction to 80 mg/kg. A microbiological evaluation of the sausages was also carried out to assess the correctness of the ripening process. The total number of viable bacteria, lactic acid bacteria, and coliforms were evaluated and subsequently identified by mass spectrometry.

Read full abstract
Open Access
Are the biodistribution and metabolic effects of copper nanoparticles dependent on differences in the physiological functions of dietary fibre?

Abstract The aim of the study was to determine the effect of the recommended (6.5 mg/kg) or enhanced (13 mg/kg) level of CuNPs in the diet in combination with different types of dietary fibre – cellulose (control), inulin, pectin, or psyllium on the Cu biodistribution and level of selected minerals parameters in the blood of rats. Rats were randomly divided into 10 groups. The first two groups were fed control diets containing cellulose and a mineral mixture with standard or enhanced content of CuCO3. Experimental groups were fed a diet supplemented with CuNPs (6.5 or 13 mg/kg) and combined with different types of fibre (cellulose, pectin, inulin, or psyllium). After the feeding period blood, liver, brain, and thigh samples were collected. In the samples of water, diet, urine, feces, liver, brain, and thigh the Cu content was determined to assess Cu biodistribution in the body. Additionally, the concentrations of minerals (Cu, P, Ca, Mg, Fe, and Zn) in the blood plasma samples were measured. The replacement of CuCO3 with CuNPs in the diet beneficially influenced the biodistribution of Cu in the body by reducing its excretion, improving its digestibility, and utilization, reducing its accumulation in the brain and muscle, and increasing levels of Ca, P, Mg, Zn and Fe in the blood. Increasing the level of CuNPs in the diet increased total Cu intake. The addition of pectin, inulin and psyllium to the diet with a high content of CuNPs significantly increased the excretion of Cu, with no negative effect on its digestibility, and utilization, and prevented its excessive accumulation in the brain and muscle of rats, especially in the case of inulin. The results suggest that the addition of dietary fibre to the diet of rats ensures homeostasis of this element in the case of excessive intake of CuNPs by modifying the bioavailability of Cu.

Read full abstract
Open Access
Innovations in Wheat Bread: Using Food Industry By-Products for Better Quality and Nutrition

The evolution of wheat bread as a dietary staple underscores its essential role in providing energy, protein, fiber, and vital nutrients. To address contemporary health challenges such as type 2 diabetes and cardiovascular diseases, fortifying wheat bread with health-promoting additives becomes imperative to mitigate deficiencies resulting from refined wheat flour consumption. Functional food innovations, aligned with sustainability goals and circular economy principles, offer promising approaches for addressing these concerns. Integrating by-products from fruits and oil crops into bread formulations enhances health benefits by boosting dietary fiber, bioactive compounds, and antioxidant potential. However, gaps persist in understanding anti-nutritional substances and contaminants in final products, necessitating further research for comprehensive safety assessments. The addition of by-product raw materials significantly influences dough rheology and sensory characteristics, potentially achieving quality comparable to traditional wheat bread. Challenges include inconsistencies in bread and by-product specifications across studies, hindering direct result comparison. Overcoming these obstacles is crucial for maximizing the potential of agri-food by-products in creating healthier, sustainable bread options while maintaining safety and quality standards.

Read full abstract
Open Access