Year
Publisher
Journal
Institution
1
Institution Country
Publication Type
Field Of Study
Topics
Open Access
Language
Filter 1
Year
Publisher
Journal
Institution
1
Institution Country
Publication Type
Field Of Study
Topics
Open Access
Language
Filter 1
Export
Sort by: Relevance
Increasing taxonomic diversity and spatial resolution clarifies opportunities for protecting US imperiled species.

Continental‐ and regional‐scale assessments of gaps in protected area networks typically use relatively coarse range maps for well documented species groups, creating uncertainty about the fate of unexamined biodiversity and providing insufficient guidance for land managers. By building habitat suitability models for a taxonomically diverse group of 2216 imperiled plants and animals, we revealed comprehensive and detailed protection opportunities in the conterminous United States. Summing protection‐weighted range‐size rarity (PWRSR, the product of the percent of modeled habitat outside of protected areas and the inverse of modeled habitat extent) uncovered novel patterns of biodiversity importance. Concentrations of unprotected imperiled species in places such as the northern Sierra Nevada, central and northern Arizona, the Rocky Mountains of Utah and Colorado, southeastern Texas, southwestern Arkansas, and Florida's Lake Wales Ridge have rarely if ever been featured in continental‐ and regional‐scale analyses. Inclusion of diverse taxa (vertebrates, freshwater mussels, crayfishes, bumble bees, butterflies, skippers, and vascular plants) partially drove these new patterns. When analyses were restricted to groups typically included in previous studies (birds, mammals, and amphibians), up to 53% of imperiled species in other groups were left out. The finer resolution of modeled inputs (990 m) also resulted in a more geographically dispersed pattern. For example, 90% of the human population of the conterminous United States lives within 50 km of modeled habitat for one or more species with high PWRSR scores. Over one‐half of the habitat for 818 species occurs within federally lands managed for biodiversity protection; an additional 360 species have over one‐half of their modeled habitat on federal multiple use land. Freshwater animals occur in places with poorer landscape condition but with less exposure to climate change than other groups, suggesting that habitat restoration is an important conservation strategy for these species. The results provide fine‐scale, taxonomically diverse inputs for local and regional priority‐setting and show that although protection efforts are still widely needed on private lands, notable gains can be achieved by increasing protection status on selected federal lands.

Read full abstract
Using expert knowledge to support Endangered Species Act decision-making for data-deficient species.

Many questions relevant to conservation decision‐making are characterized by extreme uncertainty due to lack of empirical data and complexity of the underlying ecologic processes, leading to a rapid increase in the use of structured protocols to elicit expert knowledge. Published ecologic applications often employ a modified Delphi method, where experts provide judgments anonymously and mathematical aggregation techniques are used to combine judgments. The Sheffield elicitation framework (SHELF) differs in its behavioral approach to synthesizing individual judgments into a fully specified probability distribution for an unknown quantity. We used the SHELF protocol remotely to assess extinction risk of three subterranean aquatic species that are being considered for listing under the U.S. Endangered Species Act. We provided experts an empirical threat assessment for each known locality over a video conference and recorded judgments on the probability of population persistence over four generations with online submission forms and R‐shiny apps available through the SHELF package. Despite large uncertainty for all populations, there were key differences between species’ risk of extirpation based on spatial variation in dominant threats, local land use and management practices, and species’ microhabitat. The resulting probability distributions provided decision makers with a full picture of uncertainty that was consistent with the probabilistic nature of risk assessments. Discussion among experts during SHELF's behavioral aggregation stage clearly documented dominant threats (e.g., development, timber harvest, animal agriculture, and cave visitation) and their interactions with local cave geology and species’ habitat. Our virtual implementation of the SHELF protocol demonstrated the flexibility of the approach for conservation applications operating on budgets and time lines that can limit in‐person meetings of geographically dispersed experts.

Read full abstract
Open Access
Evaluation of eDNA for groundwater invertebrate detection and monitoring: a case study with endangered Stygobromus (Amphipoda: Crangonyctidae)

Effective conservation and management of biodiversity is limited by a lack of critical knowledge on species’ distributions and abundances. This problem is particularly exacerbated for species living in habitats that are exceptionally difficult to access or survey, such as groundwater habitats. Environmental DNA (eDNA) represents a rapid, noninvasive, and potentially cost-effective new tool for detection and monitoring of biodiversity that occur in such habitats. In this study, we investigated the utility of eDNA in detecting the federally endangered Hay’s Spring Amphipod Stygobromus hayi and a co-occurring common congener S. tenuis potomacus from unique groundwater-associated habitats—hypotelminorheic seepage springs—in the Washington, DC metro area. We developed taxon-specific primers and probes for each species to amplify Stygobromus DNA using qPCR. In silico and in vitro validation demonstrated specificity of each designed assay. Assays were then used to screen water samples collected from ten seepage springs. Stygobromus hayi was detected at four seepage springs, including one potential new locality, while S. t. potomacus was detected at four springs, two of which were new localities. This study is the first to our knowledge to successfully employ an eDNA approach to detect rare or threatened invertebrates from subterranean ecosystems. Our study highlights challenges of employing an eDNA approach for the detection and monitoring of invertebrates in groundwater habitats that are difficult to study, including accounting for PCR inhibition and the potential for cryptic genetic diversity.

Read full abstract
Metagenomic analysis of planktonic microbial consortia from a non-tidal urban-impacted segment of James River.

Knowledge of the diversity and ecological function of the microbial consortia of James River in Virginia, USA, is essential to developing a more complete understanding of the ecology of this model river system. Metagenomic analysis of James River's planktonic microbial community was performed for the first time using an unamplified genomic library and a 16S rDNA amplicon library prepared and sequenced by Ion PGM and MiSeq, respectively. From the 0.46-Gb WGS library (GenBank:SRR1146621; MG-RAST:4532156.3), 4 × 106 reads revealed >3 × 106 genes, 240 families of prokaryotes, and 155 families of eukaryotes. From the 0.68-Gb 16S library (GenBank:SRR2124995; MG-RAST:4631271.3; EMB:2184), 4 × 106 reads revealed 259 families of eubacteria. Results of the WGS and 16S analyses were highly consistent and indicated that more than half of the bacterial sequences were Proteobacteria, predominantly Comamonadaceae. The most numerous genera in this group were Acidovorax (including iron oxidizers, nitrotolulene degraders, and plant pathogens), which accounted for 10 % of assigned bacterial reads. Polaromonas were another 6 % of all bacterial reads, with many assignments to groups capable of degrading polycyclic aromatic hydrocarbons. Albidiferax (iron reducers) and Variovorax (biodegraders of a variety of natural biogenic compounds as well as anthropogenic contaminants such as polycyclic aromatic hydrocarbons and endocrine disruptors) each accounted for an additional 3 % of bacterial reads. Comparison of these data to other publically-available aquatic metagenomes revealed that this stretch of James River is highly similar to the upper Mississippi River, and that these river systems are more similar to aquaculture and sludge ecosystems than they are to lakes or to a pristine section of the upper Amazon River. Taken together, these analyses exposed previously unknown aspects of microbial biodiversity, documented the ecological responses of microbes to urban effects, and revealed the noteworthy presence of 22 human-pathogenic bacterial genera (e.g., Enterobacteriaceae, pathogenic Pseudomonadaceae, and ‘Vibrionales') and 6 pathogenic eukaryotic genera (e.g., Trypanosomatidae and Vahlkampfiidae). This information about pathogen diversity may be used to promote human epidemiological studies, enhance existing water quality monitoring efforts, and increase awareness of the possible health risks associated with recreational use of James River.

Read full abstract
Open Access