Sort by
Computational Fluid Dynamics Process for Front Windshield Mist Deposition and Its Subsequent Demisting

<div>A vehicle’s heating, ventilation, and air-conditioning system plays a dual role in passenger thermal comfort and safety. The functional aspects of safety include the front windshield demist and deicing feature of the system. The thin-film mist is a result of condensation of water vapor on the inner side of the windshield, which occurs at low ambient temperatures or high humidity. This mist deposition depends on the air saturation pressure at the front windshield. Indian regulation AIS-084 defines the experimental setup for testing, which encompasses both the mist deposition and its subsequent demist process. This regulation mandates testing, which occurs at a later stage of product development. This performance validation can be performed using a three-dimensional computational fluid dynamics approach.</div> <div>Current work summarizes the simulation process for both the mist deposition and the subsequent demisting phenomenon. The complexity of the flow physics is captured via the transient multiphase fluid flow phenomenon subjected to buoyancy effects. This phenomenon is simulated using the Eulerian wall film approach. The wall film deposition of the mist is modeled via species transport. Further, the near-wall thermal effects of surface conduction and heat transfer are simulated by modeling shell conduction layers. Vapor diffusion and relative humidity inside the cabin are modeled using a user-defined function. The process correlation is achieved for two categories of vehicles to establish the process efficacy and robustness. Moving ahead, a design of experiments (DOE) is planned to mitigate the need to simulate mist deposition. The DOE is planning to incorporate deviations in both the input airflow conditions and the imposed ambient conditions. The results from DOE point toward factors that might cause deviations in simulation results with respect to the test. Importantly, the study concludes that the uniform initial thickness assumption of the mist layer can be used for subsequent demist analysis.</div>

Relevant
A Combined Experimental and Numerical Analysis on the Aerodynamics of a Carbon-Ceramic Brake Disc

<div>Composite ceramic brake discs are made of ceramic material reinforced with carbon fibers and offer exceptional advantages that translate directly into higher vehicle performance. In the case of an electric vehicle, it could increase the range of the vehicle, and in the case of conventional internal combustion engine vehicles, it means lower fuel consumption (and consequently lower CO<sub>2</sub> emissions). These discs are typically characterized by complex internal geometries, further complicated by the presence of drilling holes on both friction surfaces. To estimate the aerothermal performance of these discs, and for the thermal management of the vehicle, a reliable model for predicting the air flowing across the disc channels is needed. In this study, a real carbon-ceramic brake disc with drilling holes was investigated in a dedicated test rig simulating the wheel corner flow conditions experimentally using the particle image velocimetry technique and numerically. The simulation was performed using the moving reference frame (MRF) approach and the experimental data were used to validate the numerical model. The results show that drilling holes contribute to about 13% of the inlet mass flow and more than 86% of the air driven into the brake disc comes from the main inlet of the disc. Moreover, the numerical results are in an agreement with experimental data, supporting MRF approach as a suitable model for the analysis of complex flows in complicated geometries.</div>

Relevant
Design and Failure Analysis of Motorbike Sub-frame Using Finite Element Analysis

<div>All two-wheeler industries validate their product’s fatigue life on proving track before heading for mass production. Proving test tracks are made to simulate the end-user environment in order to find out the possible fatigue failures during each development stage of vehicle design, which in turn helps the CAE analysts to verify the design before it goes to the end-user hands. In this article we present the design and failure analysis of sub-frame assembly of motorbike observed during the accelerated fatigue test on proving track. Sub-frame main rod was found broken exactly between two weld endings during fatigue test before reaching 6% of the target fatigue life. Possible causes of sub-frame failures have been identified/analyzed in detail using fish bone diagram. A finite element analysis (FEA) model of sub-frame assembly was developed and a random response analysis was carried out on initial design. Acceleration input loads measured from test track have been given at the sub-frame mounting points to calculate output responses. Output responses show a high magnitude of amplitude stresses on the sub-frame main rod exactly where track test failure occurred. Fishbone diagram analysis indicates that the improper design of the stay bracket, stress concentrations regions in the design, improper weld/tool fixture, and method of welding could be reasons for failure. FEA on the final design concept shows a reduction of amplitude stress to 49% and an increase of fatigue life to an infinite limit as compared to initial design.</div>

Relevant
Nonreciprocal Elasticity and Nonuniform Thickness of Curved Spokes on the Top-Loading Ratio, Vertical Stiffness, and Local Stress of Nonpneumatic Wheels

<div>The nonreciprocal elastic behavior of flexible spokes is essential for designing a top-loading condition of nonpneumatic wheels to distribute the vehicle load throughout the upper circumferential region of a wheel to replicate the loading mode of their pneumatic counterparts. However, most ad hoc spoke designs had been conducted without considering the top-loading mechanics. Moreover, minimizing the stress concentration on the spokes is also significant for preventing potential failures; however, modification of the geometry to reduce the local stress on the spokes has not yet been studied. In this work, we investigate the effect of nonreciprocal elastic behaviors of curved spokes on the top-loading distribution of nonpneumatic wheels. We also study the geometric effect of nonuniform curved spokes on reducing the local stress concentration. Curved beam spokes with greater curvature can contribute to a high top-loading ratio of nonpneumatic wheels. The nonuniform thickness of curved spokes with the spoke’s ends and center regions can reduce the local stress level by up to 24%. Our design method with varying curvature and nonuniformity of the curved spokes can provide significant design guidelines for nonpneumatic wheels for determining the top-loading ratio, tuning the vertical stiffness, and minimizing local stress on the spokes.</div>

Relevant
Stochastic Noise Sources for Computational Aeroacoustics of a Vehicle Side Mirror

<div>The broadband aeroacoustics of a side mirror is investigated with a stochastic noise source method and compared to scale-resolving simulations. The setup based on an already existing work includes two geometrical variants with a plain series side mirror and a modified mirror with a forward-facing step mounted on the inner side. The aeroacoustic near- and farfield is computed by a hydrodynamic–acoustic splitting approach by means of a perturbed convective wave equation. Aeroacoustic source terms are computed by the Fast Random Particle-Mesh method, a stochastic noise source method modeling velocity fluctuations in time domain based on time-averaged turbulence statistics. Three RANS models are used to provide input data for the Fast Random Particle-Mesh method with fundamental differences in local flow phenomena. Results of aeroacoustics simulations excited by the Fast Random Particle-Mesh method based on well-matching RANS data are in good agreement to the scale-resolving simulations in the integral acoustic Delta on the side window induced by the different side mirror geometries. For relative levels in between the variations, the robustness of the Fast Random Particle-Mesh method can be shown with secondary influences on the choice of the integral length scale. Absolute levels are only achieved with an adaptation of the length scale from literature. Two different RANS models with a missing separation bubble on the mirror or an overestimated wake flow show a good agreement with the plain series side mirror. However, they fail at computing the Delta to the step variant due to the missing amplification of the local turbulent kinetic energy interacting with the step and downstream mirror surfaces. Computational aeroacoustics simulations excited by the Fast Random Particle-Mesh method method based on RANS data only needs 14% of the computational effort compared to the conventional hybrid RANS-LES approach. This reveals its enormous potential for aeroacoustic broadband noise optimization purposes.</div>

Relevant
Enhancing Autonomous Vehicle Safety in Cold Climates by Using a Road Weather Model: Safely Avoiding Unnecessary Operational Design Domain Exits

<div>This study investigates the use of a road weather model (RWM) as a virtual sensing technique to assist autonomous vehicles (AVs) in driving safely, even in challenging winter weather conditions. In particular, we investigate how the AVs can remain within their operational design domain (ODD) for a greater duration and minimize unnecessary exits. As the road surface temperature (RST) is one of the most critical variables for driving safety in winter weather, we explore the use of the vehicle’s air temperature (AT) sensor as an indicator of RST. Data from both Road Weather Information System (RWIS) stations and vehicles measuring AT and road conditions were used. Results showed that using only the AT sensor as an indicator of RST could result in a high number of false warnings, but the accuracy improved significantly with the use of an RWM to model the RST. ROC-curve analysis resulted in an AUC value of 0.917 with the AT sensor and 0.985 with the RWM, while the true positive rate increased from 67% to 94%. The study also highlights the limitations of relying on dashboard cameras to detect slippery driving conditions, as it may not be accurate enough to distinguish between, for example, wet and icy road conditions. As winter maintenance often prevents slippery roads, the vehicles often measured wet or moist roads, despite RST < 0°C. Our calculations indicate that the vehicle should be able to detect 93% of slippery occasions but the rate of false warnings will be as high as 73%, if using a dashboard camera along with the AT sensor. There are clear benefits of using a RWM to improve road safety and reduce the risk of accidents due to slippery conditions, allowing AVs to safely extend their time within their ODD. The findings of this study provide valuable insights for the development of AVs and their response to slippery road conditions.</div>

Relevant