Sort by
Multifunctional polymer-based nanocomposites for synergistic adsorption and photocatalytic degradation of mixed pollutants in water.

Water pollution is a growing concern for mankind due to its harmful effects on humans, animals and plants. Usually, several pollutants are present in wastewater. For example, dyes and antibiotics are found in wastewater because of their widespread use in factories and hospitals. However, one single technique, e.g. either adsorption or photocatalysis, cannot easily remove more than one kind of pollutant, especially by using one single material in water. For this reason, here multifunctional iron(ii,iii) oxide/poly(N-isopropylacrylamide-co-methacrylic acid)/silver-titanium dioxide (Fe3O4/P(NIPAM-co-MAA)/Ag-TiO2) nanocomposites were used to remove a mixture of pollutants from water. Specifically, three types of experiments were performed to evaluate the adsorption capacity and photodegradation activity of the nanocomposites towards the dye basic fuchsin (BF) and the antibiotic ciprofloxacin (CIP), which were added sequentially to the nanocomposites dispersion or were concurrently present as a mixture. The results demonstrated that the nanocomposites could adsorb BF, and subsequently photodegrade CIP under visible-light irradiation, if BF was the first added pollutant. As well, the nanocomposites could first degrade CIP under visible-light irradiation, and then adsorb BF if they were initially put in contact with CIP. Finally, the ability of adsorbing BF and photodegrading CIP was confirmed in the co-presence of the two pollutants.

Open Access
Relevant
Modulating p-type doping of two dimensional material palladium diselenide

The van der Waals heterostructures have evolved as novel materials for complementing the Si-based semiconductor technologies. Group-10 noble metal dichalcogenides (e.g., PtS2, PtSe2, PdS2, and PdSe2) have been listed into two-dimensional (2D) materials toolkit to assemble van der Waals heterostructures. Among them, PdSe2 demonstrates advantages of high stability in air, high mobility, and wide tunable bandgap. However, the regulation of p-type doping of PdSe2 remains unsolved problem prior to fabricating p–n junction as a fundamental platform of semiconductor physics. Besides, a quantitative method for the controllable doping of PdSe2 is yet to be reported. In this study, the doping level of PdSe2 was correlated with the concentration of Lewis acids, for example, SnCl4, used for soaking. Considering the transfer characteristics, the threshold voltage (the gate voltage corresponding to the minimum drain current) increased after SnCl4 soaking treatment. PdSe2 transistors were soaked in SnCl4 solutions with five different concentrations. The threshold voltages from the as-obtained transfer curves were extracted for linear fitting to the threshold voltage versus doping concentration correlation equation. This study provides in-depth insights into the controllable p-type doping of PdSe2. It may also push forward the research of the regulation of conductivity behaviors of 2D materials.

Open Access
Relevant
Carbon nanotube neurotransistors with ambipolar memory and learning functions

In recent years, neuromorphic computing has gained attention as a promising approach to enhance computing efficiency. Among existing approaches, neurotransistors have emerged as a particularly promising option as they accurately represent neuron structure, integrating the plasticity of synapses along with that of the neuronal membrane. An ambipolar character could offer designers more flexibility in customizing the charge flow to construct circuits of higher complexity. We propose a novel design for an ambipolar neuromorphic transistor, utilizing carbon nanotubes as the semiconducting channel and an ion-doped sol–gel as the polarizable gate dielectric. Due to its tunability and high dielectric constant, the sol–gel effectively modulates the conductivity of nanotubes, leading to efficient and controllable short-term potentiation and depression. Experimental results indicate that the proposed design achieves reliable and tunable synaptic responses with low power consumption. Our findings suggest that the method can potentially provide an efficient solution for realizing more adaptable cognitive computing systems.Impact statementThe huge amount of data generated by the current society makes it necessary to explore new computing methods with higher efficiency to overcome the bottleneck formed between data storage and processing tasks. Neuromorphic computing aims at emulating the functioning of our brain, which performs both tasks utilizing the same hardware. Here, we propose ambipolar field-effect transistors based on carbon nanotubes with a polarizable gate dielectric, capable of providing memory functions reminiscent of neuronal synapses, at both polarities of the device. The ambipolar characteristic doubles the possibilities of previously demonstrated neurotransistors. The short-term and ambipolar behavior of the device can find its place in novel applications in the future. Machine learning-enabled gas sensing is an excellent example, where real-time processing of large amounts of data is beneficial. In addition, interaction with oxidative and reductive gases will result in dual responses due to the ambipolarity of the transistor, along with the possibility of storing the sensing data.Graphical abstract

Open Access
Relevant
Sybodies as Novel Bioreceptors toward Field-Effect Transistor-Based Detection of SARS-CoV-2 Antigens.

The SARS-CoV-2 pandemic has increased the demand for low-cost, portable, and rapid biosensors, driving huge research efforts toward new nanomaterial-based approaches with high sensitivity. Many of them employ antibodies as bioreceptors, which have a costly development process that requires animal facilities. Recently, sybodies emerged as a new alternative class of synthetic binders and receptors with high antigen binding efficiency, improved chemical stability, and lower production costs via animal-free methods. Their smaller size is an important asset to consider in combination with ultrasensitive field-effect transistors (FETs) as transducers, which respond more intensely when biorecognition occurs near their surface. This work demonstrates the immobilization of sybodies against the spike protein of the virus on silicon surfaces, which are often integral parts of the semiconducting channel of FETs. Immobilized sybodies maintain the capability to capture antigens, even at low concentrations in the femtomolar range, as observed by fluorescence microscopy. Finally, the first proof of concept of sybody-modified FET sensing is provided using a nanoscopic silicon net as the sensitive area where the sybodies are immobilized. The future development of further sybodies against other biomarkers and their generalization in biosensors could be critical to decrease the cost of biodetection platforms in future pandemics.

Relevant