Abstract

We address the electron-spin-phonon coupling in an effective model Hamiltonian for DNA to assess its role in spin transfer involved in the Chiral-Induced Spin Selectivity (CISS) effect. The envelope function approach is used to describe semiclassical electron transfer in a tight-binding model of DNA at half filling in the presence of intrinsic spin-orbit coupling. Spin-phonon coupling arises from the orbital-configuration dependence of the spin-orbit interaction. We find spin-phonon coupling only for the acoustic modes, while the optical modes exhibit electron-phonon interaction without coupling to spin. We derive an effective Hamiltonian whose eigenstates carry spin currents that are protected by spin-inactive stretching optical modes. As optical phonons interact more strongly than acoustic phonons, side buckling and tilting optical base modes will be more strongly associated with decoherence, which allows for the two terminal spin filtering effects found in CISS.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.