Sort by
A Quantum Harmonic Analysis Approach to Segal Algebras

In this article, we study a commutative Banach algebra structure on the space L1(R2n)⊕T1\\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{mathrsfs} \\usepackage{upgreek} \\setlength{\\oddsidemargin}{-69pt} \\begin{document}$$L^1(\\mathbb {R}^{2n})\\oplus {\\mathcal {T}}^1$$\\end{document}, where the T1\\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{mathrsfs} \\usepackage{upgreek} \\setlength{\\oddsidemargin}{-69pt} \\begin{document}$${\\mathcal {T}}^1$$\\end{document} denotes the trace class operators on L2(Rn)\\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{mathrsfs} \\usepackage{upgreek} \\setlength{\\oddsidemargin}{-69pt} \\begin{document}$$L^2(\\mathbb {R}^{n})$$\\end{document}. The product of this space is given by the convolutions in quantum harmonic analysis. Towards this goal, we study the closed ideals of this space, and in particular its Gelfand theory. We additionally develop the concept of quantum Segal algebras as an analogue of Segal algebras. We prove that many of the properties of Segal algebras have transfers to quantum Segal algebras. However, it should be noted that in contrast to Segal algebras, quantum Segal algebras are not ideals of the ambient space. We also give examples of different constructions that yield quantum Segal algebras.

Open Access
Relevant
Subhomogeneous Operator Systems and Classification of Operator Systems Generated by Λ\\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{mathrsfs} \\usepackage{upgreek} \\setlength{\\oddsidemargin}{-69pt} \\begin{document}$$\\Lambda $$\\end{document}-Commuting Unitaries

A unital C∗\\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{mathrsfs} \\usepackage{upgreek} \\setlength{\\oddsidemargin}{-69pt} \\begin{document}$$C^*$$\\end{document}-algebra is called N-subhomogeneous if its irreducible representations are finite dimensional with dimension at most N. We extend this notion to operator systems, replacing irreducible representations by boundary representations. This is done by considering UCP(S)\\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{mathrsfs} \\usepackage{upgreek} \\setlength{\\oddsidemargin}{-69pt} \\begin{document}$$\ ext {UCP }(\\mathcal {S})$$\\end{document} which is the matrix state space associated with an operator system S\\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{mathrsfs} \\usepackage{upgreek} \\setlength{\\oddsidemargin}{-69pt} \\begin{document}$$\\mathcal {S}$$\\end{document} and identifying the boundary representations as absolute matrix extreme points. We show that two N-subhomogeneous operator systems are completely order equivalent if and only if they are N-order equivalent. Moreover, we show that a unital N-positive map into a finite dimensional N-subhomogeneous operator system is completely positive. We apply these tools to classify pairs of q-commuting unitaries up to ∗\\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{mathrsfs} \\usepackage{upgreek} \\setlength{\\oddsidemargin}{-69pt} \\begin{document}$$*$$\\end{document}-isomorphism. Similar results are obtained for operator systems related to higher dimensional non-commutative tori.

Open Access
Relevant
Ideal Structure of Nica-Toeplitz Algebras

We study the gauge-invariant ideal structure of the Nica-Toeplitz algebra NT(X)\\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{mathrsfs} \\usepackage{upgreek} \\setlength{\\oddsidemargin}{-69pt} \\begin{document}$$\\mathcal {N}\\mathcal {T}(X)$$\\end{document} of a product system (A, X) over Nn\\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{mathrsfs} \\usepackage{upgreek} \\setlength{\\oddsidemargin}{-69pt} \\begin{document}$$\\mathbb {N}^n$$\\end{document}. We obtain a clear description of X-invariant ideals in A, that is, restrictions of gauge-invariant ideals in NT(X)\\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{mathrsfs} \\usepackage{upgreek} \\setlength{\\oddsidemargin}{-69pt} \\begin{document}$$\\mathcal {N\\hspace{-1.111pt}T}(X)$$\\end{document} to A. The main result is a classification of gauge-invariant ideals in NT(X)\\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{mathrsfs} \\usepackage{upgreek} \\setlength{\\oddsidemargin}{-69pt} \\begin{document}$$\\mathcal {N\\hspace{-1.111pt}T}(X)$$\\end{document} for a proper product system in terms of families of ideals in A. We also apply our results to higher-rank graphs.

Open Access
Relevant