Abstract
We study abstract sufficient criteria for cost-uniform open-loop stabilizability of linear control systems in a Banach space with a bounded control operator, which build up and generalize a sufficient condition for null-controllability in Banach spaces given by an uncertainty principle and a dissipation estimate. For stabilizability these estimates are only needed for a single spectral parameter and, in particular, their constants do not depend on the growth rate w.r.t. this parameter. Our result unifies and generalizes earlier results obtained in the context of Hilbert spaces. As an application we consider fractional powers of elliptic differential operators with constant coefficients in Lp(Rd)\\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{mathrsfs} \\usepackage{upgreek} \\setlength{\\oddsidemargin}{-69pt} \\begin{document}$$L_p(\\mathbb {R}^d)$$\\end{document} for p∈[1,∞)\\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{mathrsfs} \\usepackage{upgreek} \\setlength{\\oddsidemargin}{-69pt} \\begin{document}$$p\\in [1,\\infty )$$\\end{document} and thick control sets.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.