Carbon-based cyclic molecules with alternating polycyclic regions and double carbon chains referred to as carbon nanobracelets are studied using spin-polarized density functional theory (DFT) calculations with PBE functional. Optimized structure of considered nanobracelets consisting of 1–5 identical monomers with and without hydrogen atoms at the edge of polycyclic regions is found to have highest possible symmetry and bond length alternation in chains. Nanobracelets consisting of odd number of monomers have lower HOMO energy, greater HOMO-LUMO gap and greater bond length variation in the carbon atomic chains than nanobracelets with even number of monomers.
Read full abstract- Home
- Search
Year
Publisher
Journal
Institution
1
Institution Country
Publication Type
Field Of Study
Topics
Open Access
Language
Reset All
Filter 1
Cancel
Year
Publisher
Journal
Institution
1
Institution Country
Publication Type
Field Of Study
Topics
Open Access
Language
Reset All
Filter 1
Export
Sort by: Relevance