Sort by
Delayed intestinal perforation associated with peritoneal dialysis: A case report of maintaining dialysis after perforation.

Delayed intestinal perforation has various manifestations. For peritonitis with delayed treatment and multi-bacterial peritonitis, we should be alert to the occurrence of this rare complication. Abdominal CT examination and imaging results judgment based on clinical conditions are particularly important for diagnosis. Delayed intestinal perforation of peritoneal dialysis catheter is a rare but serious complication. We reported a 49-year-old patient who had been hospitalized twice within 3 months due to poor drainage of the peritoneal dialysis catheter. During the first hospitalization, peritoneal dialysis-related peritonitis was diagnosed, and a variety of bacterial infections were cultivated. However, at that time, the actual peritoneal dialysis catheter-related intestinal perforation was missed, and he was discharged after anti-infection treatment until a clinical cure was met. After more than 2 months of normal peritoneal dialysis after returning home, the patient again had poor drainage of the peritoneal dialysis catheter, accompanied by the outflow of yellowish-brown sediment. It was found that the peritoneal dialysis catheter had evidence of intestinal perforation. After the removal of the catheter and intestinal repair, he recovered and was discharged from the hospital and received long-term hemodialysis treatment. In the case of delayed intestinal perforation, peritoneal dialysis was maintained normally for more than 2 months, which was an unprecedented situation in previous case reports. In addition, we should be alert to the occurrence of this rare complication, especially when we find the occurrence of polybacterial Peritonitis. Abdominal CT examination and imaging results judgment based on clinical conditions are particularly important for diagnosis.

Open Access
Relevant
Targeting Thbs1 reduces bladder remodeling caused by partial bladder outlet obstruction via the FGFR3/p-FGFR3 pathway.

Partial bladder outlet obstruction (pBOO) may lead to bladder remodeling, including fibrosis and extracellular matrix (ECM) deposition. Despite the extensive research on the mechanisms underlying pBOO, potential therapeutic targets for the treatment of pBOO require further research. Dysregulated expression of thrombospondin-1 (Thbs1) has been reported in various human fibrotic diseases; however, its relationship with pBOO remains unclear. Investigate the effects of Thbs1 on bladder remodeling caused by pBOO. We established a pBOO model in Sprague-Dawley rats and performed urodynamic analyses to estimate functional changes in the bladder, validated the histopathological changes in the bladder by using haematoxylin-eosin and Masson's trichrome staining, identified key target genes by integrating RNA sequencing(RNA-seq) and bioinformatics analyses, validated the expression of related factors using Western blot analysis and RT-qPCR, and used immunofluorescence staining to probe the potential interaction factors of Thbs1. Urodynamic results showed that pressure-related parameters were significantly increased in rats with pBOO. Compared with the sham group, the pBOO group demonstrated significant increases in bladder morphology, bladder weight, and collagen deposition. Thbs1 was significantly upregulated in the bladder tissues of rats with pBOO, consistent with the RNA-seq data. Thbs1 upregulation led to increased expression of matrix metalloproteinase (MMP) 2, MMP9, and fibronectin (Fn) in normal human urinary tract epithelial cells (SV-HUC-1), whereas anti-Thbs1 treatment inhibited the production of these cytokines in TGF-β1-treated SV-HUC-1. Further experiments indicated that Thbs1 affected bladder remodeling in pBOO via the fibroblast growth factor receptor 3 (FGFR3) pathway. Thbs1 plays a crucial role in bladder remodeling caused by pBOO. Targeting Thbs1 might alleviate ECM damage. Mechanistically, Thbs1 may function via the FGFR signaling pathway by regulating the FGFR3 receptor, identified as the most relevant disease target of pBOO, and FGF2 may be a mediator. These findings suggest that Thbs1 plays a role in BOO development and is a therapeutic target for this condition.

Relevant
Association of frailty with activity levels and sedentary behaviours in patients with hepatitis B cirrhosis: A cross-sectional study.

Research on the association between activity levels and sedentary behaviour with frailty in patients affected by hepatitis B cirrhosis is sparse. This study aimed to explore the association of frailty with activity levels and sedentary behaviours in patients with hepatitis B cirrhosis. This cross-sectional study followed the STROBE checklist. This study was conducted in Guangzhou, China, between August 2021 and October 2022. The frailty condition of patients with hepatitis B cirrhosis was assessed using the liver frailty index (LFI). Their physical activity levels and sedentary time were assessed using the International Questionnaire of Physical Activity. Pearson correlation and binary logistic regression were used to analyse the data. Among the 503 patients with hepatitis B cirrhosis in the final analysis, 107 (21.3%) were identified as frail. Frailty was negatively correlated with walking time (r = -0.174, p < 0.001), moderate-intensity activity time (r = -0.185, p < 0.001), high-intensity activity time (r = -0.243, p < 0.001) and total activity time (r = -0.256, p < 0.001). Patients with insufficient activity (<150 min/week) and sedentary behaviour (≥420 min/day) were found to have 2.829 times higher risk of frailty than those with sufficient activity (≥150 min/week) and no sedentary behaviour (<420 min/day) (95% CI: 1.380, 5.799). Patients with hepatitis B cirrhosis who exhibited frailty demonstrated limited physical activity and engaged in sedentary behaviours. Patients with hepatitis B cirrhosis contributed their data to the study.

Open Access
Relevant
Modified American College of Radiology Thyroid Imaging Reporting and Data System and Modified Artificial Intelligence Thyroid Imaging Reporting and Data System for Thyroid Nodules: A Multicenter Retrospective Study.

Background: Risk stratification systems for thyroid nodules are limited by low specificity. The fine-needle aspiration (FNA) biopsy size thresholds and stratification criteria are based on evidence from the literature and expert consensus. Our aims were to investigate the optimal FNA biopsy size thresholds in the American College of Radiology (ACR) Thyroid Imaging Reporting and Data System (TI-RADS) and artificial intelligence (AI) TI-RADS and to revise the stratification criteria in AI TI-RADS. Methods: A total of 2596 thyroid nodules (in 2511 patients) on ultrasound examination with definite pathological diagnoses were retrospectively identified from January 2017 to September 2021 in 6 participating Chinese hospitals. The modified criteria for ACR TI-RADS were as follows: (1) no FNA for TR3; (2) FNA threshold for TR4 increased to 2.5 cm. The modified criteria for AI TI-RADS were as follows: (1) 6-point nodules upgraded to TR5; (2) no FNA for TR3; (3) FNA threshold for TR4 increased to 2.5 cm. The diagnostic performance and the unnecessary FNA rate (UFR) of modified versions were compared with the original ACR TI-RADS. Results: Compared with the original ACR TI-RADS, the modified ACR (mACR) TI-RADS yielded higher specificity (73% vs. 46%), accuracy (74% vs. 51%), area under the receiver operating characteristic curve (AUC; 0.80 vs. 0.70), and lower UFR (25% vs. 48%; all p < 0.001), although the sensitivity was slightly decreased (87% vs. 93%, p = 0.057). Compared with the original ACR TI-RADS, the modified AI (mAI) TI-RADS yielded higher specificity (73% vs. 46%), accuracy (75% vs. 51%), AUC (0.81 vs. 0.70), and lower UFR (24% vs. 48%; all p < 0.001), although the sensitivity tended to be slightly decreased (89% vs. 93%, p = 0.13). There was no significant difference between the mACR TI-RADS and mAI TI-RADS in the diagnostic performance and UFR (all p > 0.05). Conclusions: The revised FNA thresholds and the stratification criteria of the mACR TI-RADS and mAI TI-RADS may be associated with improvements in specificity and accuracy, without significantly sacrificing sensitivity for malignancy detection.

Relevant
Enhancer-mediated FOXO3 expression promotes MSC adipogenic differentiation by activating autophagy

BackgroundMesenchymal stem cells (MSCs) are pluripotent stem cells capable of differentiating into osteocytes, adipocytes and chondrocytes. However, in osteoporosis, the balance of differentiation is tipped toward adipogenesis and the key mechanism is controversial. Researches have shown that, as upstream regulatory elements of gene expression, enhancers ar involved in the expression of identity genes. In this study, we identified enhancers-mediated gene FOXO3 promoting MSC adipogenic differentiation by activating autophagy. MethodsWe integrated data of RNA sequencing (RNA-seq), chromatin immunoprecipitation sequencing (ChIP-seq) and ATAC-sequencing (ATAC-seq) to find the identity gene FOXO3. The expression of FOXO3 protein, adipogenic transcription factors and the substrate of autophagy were measured by western blotting. The Oil Red O (ORO) staining was used to visualize the adipogenesis of MSCs. Immunohistochemistry was used to visualize the FOXO3 expression in adipocytes in bone marrow. Immunofluorescence was used to detect the expression of PPARγ and LC3B. ResultsDuring adipogenesis, enhancers redistribute to genes associated with adipogenic differentiation, among which we identified the pivotal identity gene FOXO3. FOXO3 could promote the expression of the adipogenic transcription factors PPARγ, CEBPα, and CEBPβ during adipogenic differentiation, while PPARγ, CEBPα, and CEBPβ could in turn bind to FOXO3 and continue to promote FOXO3 expression to form a positive feedback loop. Consistently elevated FOXO3 expression promotes autophagy by activating the PI3K-AKT pathway which mediates adipogenic differentiation. ConclusionsPivotal identity gene FOXO3 promotes autophagy by activating PI3K-AKT pathway, which provokes adipogenic differentiation of MSCs. Enhancer-regulated adipogenic identity gene FOXO3 could be an attractive treatment for osteoporosis.

Open Access
Relevant
Empagliflozin alleviates atherosclerotic calcification by inhibiting osteogenic differentiation of vascular smooth muscle cells

SGLT-2 inhibitors, such as empagliflozin, have been shown to reduce the occurrence of cardiovascular events and delay the progression of atherosclerosis. However, its role in atherosclerotic calcification remains unclear. In this research, ApoE−/− mice were fed with western diet and empagliflozin was added to the drinking water for 24 weeks. Empagliflozin treatment significantly alleviated arterial calcification assessed by alizarin red and von kossa staining in aortic roots and reduced the lipid levels, while had little effect on body weight and blood glucose levels in ApoE−/− mice. In vitro studies, empagliflozin significantly inhibits calcification of primary vascular smooth muscle cells (VSMCs) and aortic rings induced by osteogenic media (OM) or inorganic phosphorus (Pi). RNA sequencing of VSMCs cultured in OM with or without empagliflozin showed that empagliflozin negatively regulated the osteogenic differentiation of VSMCs. And further studies confirmed that empagliflozin significantly inhibited osteogenic differentiation of VSMCs via qRT-PCR. Our study demonstrates that empagliflozin alleviates atherosclerotic calcification by inhibiting osteogenic differentiation of VSMCs, which addressed a critical need for the discovery of a drug-based therapeutic approach in the treatment of atherosclerotic calcification.

Open Access
Relevant
SUV39H1 is a novel biomarker targeting oxidative phosphorylation in hepatitis B virus-associated hepatocellular carcinoma

BackgroundAs a histone methyltransferase, suppressor of variegation 3–9 homolog 1 (SUV39H1) plays an important role in the occurrence and development of cancer. To explore the mechanism and biological function of SUV39H1 in hepatitis B virus-associated hepatocellular carcinoma (HBV-HCC) can gain an insight into the pathogenesis of HBV-HCC.MethodsThe effect of HBV infection on SUV39H1 in hepatoma cells was detected. CCK-8, colony growth assay and wound healing assay were used to assess the proliferation and migration of HBV-positive hepatoma cells. RNA sequencing (RNA-seq) was applied to find differential genes and enriched pathways. The serum SUV39H1 level in HBV-HCC patients was detected and its correlation with clinical indicators was analyzed.ResultsSUV39H1 was increased by HBV infection and promoted the proliferation and migration of hepatoma cells. SUV39H1 could upregulate the expression of mitochondrial oxidative phosphorylation (OXPHOS) pathway-related genes. OXPHOS pathway inhibitors could reduce the capacity of proliferation and migration of hepatoma cells after overexpressing SUV39H1. Serum SUV39H1 levels were higher in chronic hepatitis B (CHB) patients than in healthy controls and higher in HBV-HCC patients than in CHB patients. In the diagnosis of HCC, the predictive value of SUV39H1 combined with alpha-fetoprotein (AFP) was better than that of AFP alone.ConclusionSUV39H1 is regulated by HBV infection and promotes the proliferation and migration of hepatoma cells by targeting OXPHOS pathway. It indicates that SUV39H1 may be a new biomarker of the diagnosis of HCC.

Open Access
Relevant
Dichloroacetic acid and trichloroacetic acid as disinfection by-products in drinking water are endocrine-disrupting chemicals

Dichloroacetic acid (DCAA) and trichloroacetic acid (TCAA) are two typical non-volatile disinfection by-products (DBPs) found in drinking water. Increasing evidence has demonstrated that they show reproductive toxicity. However, whether they might have endocrine disrupting properties remains largely unknown. To discover this, we treated male mice or pregnant mice with 0, 1-, 102-, 103-, 104-, or 5 × 104-fold maximal concentration level (MCL) of DCAA or TCAA in drinking water. In male mice, the levels of testosterone in serum and androgen receptor (AR) in testis were declined with ≥ 103-fold MCL of DCAA (26.4 mg/kg/d) or TCAA (52.7 mg/kg/d). In pregnant mice, miscarriage rates were increased with ≥ 104-fold MCL of DCAA (264 mg/kg/d) or ≥ 103-fold MCL of TCAA. The levels of FSH in serum were increased and those of estradiol and progesterone were reduced with ≥ 103-fold MCL of DCAA or TCAA. The protein levels of estrogen receptors (ERα and ERβ) in ovary were reduced with ≥ 102-fold MCL of DCAA (2.64 mg/kg/d) or TCAA (5.27 mg/kg/d). Exposure to some certain fold MCL of DCAA or TCAA also altered the protein levels of ERα and ERβ in uterus and placenta. Exposure to 5 × 104-fold MCL of both DCAA and TCAA showed the combined effects. Therefore, both DCAA and TCAA could be considered as novel reproductive endocrine disrupting chemicals, which might be helpful for further assessment of the toxicological effects of DCAA and TCAA and the awareness of reproductive endocrine disrupting properties caused by DCAA and TCAA in drinking water.

Relevant